NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

UPGRADABLE OPERATIONAL AVAILABILITY
FORECASTING TOOL FOR THE U.S. NAVY
P-3 REPLACEMENT AIRCRAFT

by
Michael C. Margolis
September 2003

Thesis Advisor: Arnold H. Buss
Second Reader: David A. Schrady

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2003 Master’s Thesis

4. TITLE AND SUBTITLE: Upgradeable Operational Availability 5. FUNDING NUMBERS
Forecasting Tool for the U.S. Navy P-3 Replacement Aircraft
6. AUTHOR(S) Michael C. Margolis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The P-3 Orion maritime aircraft has been the U.S. Navy’s primary maritime patrol aircraft since its fleet
introduction in 1962. Naval Aviation Systems Command (NAVAIR) has determined that the P-3 fleet has
sufficiently aged to warrant a replacement. The replacement aircraft is currently undergoing the conceptual phase
of development and it is during this period that NAVAIR is interested in evaluating the trade-off between
operational availability and the associated cost to achieve this operational availability. This thesis developed a
simulation tool that was used to investigate relationships that affect cost and operational availability of the new
(notional) aircraft on a deployment. The simulation tool was exercised for select scenarios in order to gain
insights into the value of investing funds in additional aircraft versus the value of investing funds in increased
component reliability. The simulation was developed to be very flexible and extensible, enhancing its value for
future analyses. Required data inputs into the simulation tool are formatted utilizing a new technology called
Extensible Markup Language (XML) which facilitates use of the data in nearly all computer software packages.
The model is robust in nature and can be applied to a wide variety of aircraft.

14. SUBJECT TERMS 15. NUMBER OF
Trade-Off Analysis, Operational Availability, Readiness Based Sparing, Cost Analysis, P-3 Orion PAGES
130
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited

UPGRADABLE OPERATIONAL AVAILABILITY FORECASTING TOOL FOR
THE U.S. NAVY P-3 REPLACEMENT AIRCRAFT

Michael C. Margolis
Captain, United States Marine Corps
B.S., Mary Washington College, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 2003
Author: Michael C. Margolis
Approved by: Arnold H. Buss
Thesis Advisor

David A. Schrady
Second Reader

James N. Eagle
Chairman, Department of Operations Research

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The P-3 Orion maritime aircraft has been the U.S. Navy’s primary maritime patrol
aircraft since its fleet introduction in 1962. Naval Aviation Systems Command
(NAVAIR) has determined that the P-3 fleet has sufficiently aged to warrant a
replacement. The replacement aircraft is currently undergoing the conceptual phase of
development and it is during this period that NAVAIR is interested in evaluating the
trade-off between operational availability and the associated cost to achieve this
operational availability. This thesis developed a simulation tool that was used to
investigate relationships that affect cost and operational availability of the new (notional)
aircraft on a deployment. The simulation tool was exercised for select scenarios in order
to gain insights into the value of investing funds in additional aircraft versus the value of
investing funds in increased component reliability. The simulation was developed to be
very flexible and extensible, enhancing its value for future analyses. Required data
inputs into the simulation tool are formatted utilizing a new technology called Extensible
Markup Language (XML) which facilitates use of the data in nearly all computer
software packages. The model is robust in nature and can be applied to a wide variety of

aircraft.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs and data herein are free of
computational, logic, and collection errors, they cannot be considered validated. Any
application of these programs or data without additional verification is at the risk of the

Uuscr.

Vil

THIS PAGE INTENTIONALLY LEFT BLANK

viil

TABLE OF CONTENTS

I INTRODUCTION...uuuiiriiieiisnencsnicsensssnssssssssesssassssasssss 1
A. PURPOSE 1

B. BACKGROUNDuciiitiiitinnnisninsnississssssssesssisssessssssssesssssssssssssssssssssssessans 1

C. METHODOLOGY ..uuutiervuricssnicssnnicssssncssssscsssssssssecnns weed

D. ORGANIZATION OF STUDY ..ccuiiiiiiniinnicsnnnsnicssecsssncssessssssssessssssssssssssens 5

IL. OVERVIEW OF DATAtiinntiinnnricssnnicsssnicsssnssses 7
A. DATA RESQURCESuuutiiiiceiittnnninsnessnicssnisssessssssssessssssssssssssssssssssssssses 7

B. INPUT DATA AS XML DOCUMENT......ucieivricrsrncssnnicssanesssssessnssessssscsanes 7

III. SIMULATION MODEL DEVELOPMENTcuciviiiiiiniisnensnicsnnssencssesssnsssanes 11
A. OVERVIEW....uiniinninnninnennienninnsinsennsisseisssssisssssssesssssssssssssssssesssss 11

B. THE SCENARIQuuuiiiiiiitiiieinsninsseicssicsnisssessssssssssssssssssssssssssssssssssssssens 11

C. SIMULATION INPUTS...ccuiiiinicnsnicssnnicssnsicssssessssssssssssssssssssssosssssssnssssssss 11

D. MODEL ASSUMPTIONS . ..cciiiiinnticsniisnnsssesssicsssssssssssessssssssssssssssssessss 13

E. EVENT GRAPH NOTATIONcoioivuiiiivnricssnncssnncssssncssssessssessssssssssssssssssses 14

F. SIMULATION METHODOLOGY ...ucuiiiiinnrnsnnnsnncsnensssecssnssssncssesssncsens 15

1. SIMACE InitialiZation......ccceeervericssericssnncsssnncsssncsssncssssscssssscsssssssanns 15

2. The Sortie Process 16

3. The Post-Flight Inspection Processccccceeevcerescercscnrcscercscnenenes 17

4. The Aircraft Repair Processcceicccsssnniccssssnnrccsssnnseccssnssecsnes 19

5. The OST Process...eiiennennennsenssencsnensensssecsssssssesssssssesssssssaees 21

G. EXPERIMENTAL DESIGN....ciiiiiiiiinennninsnicsnecssnsssessssncssessssssssessans 22

IV. RESULTS AND ANALYSIS ooittviiirviencnncssnecsssnesssssesssnssssssssssssssssssssssssssssssssssssens 25
A. INTRODUCTION TO RESULTS...ucoovuiiiiniiieineicsneisnncssensssncsssssssssssessnns 25

B. PRESENTATION OF RESULTS ..cucuiiiiviiiiniiincnncssnncssnsicsssscsssssesssssossssseses 26

1. Relationship of SIMACE and PC ARROWScicevcvnriccicnnrecsnnns 26

2. Base Case: 4 Aircraft, Unmodified Data........eeeeeeeeeeerrrrccnnnneeeeeccens 31

3. Case A: 5 Aircraft, Unmodified Data......cccceeeeeeeeeeeeeeeeneeeeeeeeeeeeeeaeees 32

4. Case B: 4 Aircraft, Improved Reliability.......c.cccceevurrercercscuercscnnnnne 34

5. Application of the Weibull Distribution to MTTFcccceuurreuee. 38

V. CONCLUSIONS AND RECOMMENDATIONS....cccccittnricssnnicsssnessssnesssssssssasssnns 41
A. CONCLUSIONS cutiticniistinsnnsssesssessssessssssssisssssssssssssssssssssssssssssssssssssssass 41

B. RECOMMENDATIONS FOR FURTHER RESEARCHccccceeuerene. 42
APPENDIX A. LIST OF ACRONYMS...ciiiiinniissnnisensssicssessssnsssessssscssesssssssssssssssssees 45
APPENDIX B. CALCULATION OF OPERATIONAL AVAILABILITYccceeceeeeueneee 47
APPENDIX C. SIMULATION OUTPUTcueiiiiisiininisnensssicssnssssesssessssnesssssssssssesssssessens 53
APPENDIX D. SIMACE JAVA CODE......uiirinrrnrinssrrcsssicssssicssssssssssssssssssssssssssssssssssns 61
LIST OF REFERENCESuuuitiiiiiniitiintinnnnissicssesssisssess 107
INITIAL DISTRIBUTION LIST ..cuuuiiiiniiinnnicssnnccsssncsssncssssssssssssssssssssssessssssssssssssssssssssssss 109

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14
Figure 15

Figure 16

LIST OF FIGURES

Sample Portion of XML Document............cccceeeveviieiiieeniieeiee e 8
Sample Schema ReStriCtioNnS.cecvierieeiieiie et 9
Event Graph EXample........ccooooiiiiiiiiiiiieee e 14
The Sortie Process Event Graphccoooveviieiiiiniieiiinieeeeeeeee e 17
The Post-Flight Inspection Event Graph...........cccccoeeviiiiiiiiniiieeeeceeeee 18
The Aircraft Repair Event Graph..........cccooeveviieniiiniiiiieeieeeece e 20
The OST Process Event Graphccccoeeviieiiieeiiieeiieeeeeeeeee e 21
CaSE Y: (0, 8, 0) ittt e e e e e e e saaeaaas 28
Case Z: (2, 8, 2), without InspectionTimecccceeeeiiieeiiieeniieeeiie e 29
Case Z: (2, 8, 2), with InspectionTimecceevueeriierienieeniienie e 30
Base Case: (2, 8, 2), 4 Aircraft, Unmodified Data...........cccoeevveeevciieenieeennn. 31
Base Case with Case A (5 Aircraft, Unmodified Data).........cccccoeeeevienieennnennne. 32
Base Case with Case A, 4 vs. Total Cost..........cccooiiiiiiiiiiiiiiiiee 33
Base Case with Case A, Case B (4 Aircraft, Improved Reliability)................ 35
Base Case with Case A and Case B, 4 vs. Total Cost........ccccceveneneninennnee. 35
Base Case (Exponential MTTF) and Base Case (Weibull MTTF).................. 39

xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

LIST OF TABLES

Case Y (Constant) OULPUL......c..eeerueieeiiieeciieeeieeeeieeeeteeeireesreeeeveeesareeeaeee e 54
Case Y (Variable) OULPULoocvieiiieiiecie ettt 55
Case Z (Constant) OULPULccueeeevieeeiiieeciieesieeeeeteeeeeeeeteeeereeesveeesseeeareeenns 56
Case Z (Variable) Output (Same as Base Case)cccceevveevieenieeniienieeieenen. 57
CaSE A OULPUL....eetiieeeiiiee ettt e et e e e e e et e e e sneaeeeesnnteeeesnsaeeeas 58
CaSE B OULPUL ..ottt ettt et 59
Application of the Weibull Distribution to MTTFcccoovviiiiiiiieiieeee. 60

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

ACKNOWLEDGMENTS

The author would like to acknowledge those individuals who provided their

support:

To Dr. Arnold Buss. Thank you for your support, encouragement, and guidance.

It is an honor and privilege having you as my advisor!

To Dr. David Schrady. Thank you for keeping me honest and encouraging me to

put words on paper early on.

To Bill Kroshl and Jack Keane. Thank you for giving me the opportunity to
conduct my thesis experience tour at Johns Hopkins University. My time at the Applied

Physics Lab definitely put the “experience” in the “experience tour.”

To my Mom, Dad, and sister Julie. Thank you for supporting my education over
the years. I would not have had the opportunity to come to NPS if it was not for your

support.

To MAJ Stephanie Tutton, MAJ Joe Baird, Capt Wolfgang Lehmann, and Capt
Eric Wolf. Thank you for being my study group and most importantly my friends.

To all my classmates. Each of you helped me at one point or another on this
thesis and I am very thankful your assistance. I am truly blessed and honored to have had
the opportunity of serving with each and everyone of you and I look forward to serving

with you again in the future.

I am especially grateful to Julie Webster. Thank you for your love, support and

encouragement throughout this process. I love you.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

EXECUTIVE SUMMARY

The replacement aircraft for the U.S. Navy’s P-3 Orion aircraft is currently in the
conceptual phase of development and Naval Air Systems Command (NAVAIR) is
interested in evaluating the trade-off between cost and operational availability of the

conceptual design(s).

This thesis creates a simulation called “SIMACE” that was used to investigate
various relationships between the operational availability and cost of the new (notional)
aircraft on a deployment. SIMACE models the activity of a notional squadron of aircraft
and utilizes software named “SIMKIT,” a Java programming language package used to
develop discrete event simulations. The simulation was developed to be flexible and
extensible. New modules as well as different types of aircraft can easily be represented
in the model. Specific results should be seen as representational of the kinds of analysis

that can be done with SIMACE.

The simulation uses data input from a new technology called Extensible Markup
Language (XML) documents. The XML documents created for this thesis enable the
user to apply the same data to nearly any programming language with little or no
modification. The use of XML allows the data to be easily applied to future software

programs.

Analysis suggests that the choice of distributions used to represent aircraft
component time to failures (random variates) can have a significant impact on generated
operational availability estimates. The various databases used to obtain data for this
thesis provide only point estimates representing mean values, which limits what random
variates can be created and utilized. This thesis demonstrates that the assumption about
which distribution to use to create component time to failure random variates is critical
and is a strong reason why data collection systems should provide more information than

just the mean.

xvil

THIS PAGE INTENTIONALLY LEFT BLANK

xviil

I. INTRODUCTION

A. PURPOSE

The P-3 Orion maritime aircraft has been on the cutting edge of maritime patrol
since its fleet introduction in 1962. The first thirty years of the P-3’s existence was spent
accomplishing one of the United States’ most important missions, tracking the Soviet
Union’s submarine fleet. After decades of mission and aircraft updates, Naval Aviation
Systems Command (NAVAIR) has determined that the P-3 fleet has sufficiently aged to
warrant a replacement. Deteriorating material condition and obsolescence issues have
contributed to reduced P-3 availability. The first fleet P-3 will reach its Fatigue Life
Expended (FLE) limit in 2004. By 2007 approximately 40 aircraft will reach this level.
By 2011, 83 P-3 aircraft will reach FLE, which will place the maritime community below
their required inventory of 198 aircraft (Elward, 2000).

The P-3 fleet will be replaced and the purpose of the replacement aircraft is to
provide a weapon system to recapitalize on the P-3’s capability (Elward, 2000).
Although the design of this new aircraft has not been determined, NAVAIR wishes to

investigate various factors that may affect this notional aircraft’s operational availability.

One element of forecasting the overall operational availability of the new
type/model/series of aircraft is forecasting the availability of such aircraft on a
deployment. The purpose of this thesis is to create a simulation that can be used to
investigate relationships that affect cost and operational availability of the new (notional)
aircraft described above on a deployment. The simulation was developed to be flexible
and extensible. New modules as well as different types of aircraft can easily be

represented in the model.

B. BACKGROUND

There are three levels of Naval aviation maintenance: Organizational,
Intermediate, and Depot. Organizational Level (O-level) maintenance is performed by an
operating unit in support of its own operations and is usually accomplished by

maintenance personnel assigned to the operating unit. The O-level maintenance mission

1

is to maintain assigned aircraft in a fully mission capable status. The purpose of the
Intermediate Level (I-level) of maintenance is to enhance and sustain the combat
readiness and mission capability of supported activities by providing quality and timely
material support at the nearest location with the lowest practical resource expenditure. I-
level maintenance includes, but is not limited to the repair of individual components
removed from the aircraft. For example, an individual component breaks at the O-Level
and 1s subsequently delivered to the I-Level for repair or replacement. The third level of
Naval aviation maintenance is the Depot Level (D-level) and its purpose is to ensure
continued flying integrity of airframes and flight systems during subsequent service
periods. D-level maintenance performs major overhaul or rebuilding of parts, assemblies,
and subassemblies. It also supports O-level and I-level maintenance by providing

engineering assistance and performing maintenance that is beyond their capabilities

(OPNAVINST 4790.2H, 2001).

Operational availability (4) represents the expected percentage of time that a

weapons system or individual equipment is ready to perform satisfactorily in an operating
environment and is comprised of three main factors: reliability, maintainability, and
supportability. A measure of reliability is the time between failures. The time span
between subsequent failures of a particular component is a measure of how reliable the
component is. An example of maintainability is the time necessary to remove and
replace a broken component and has much to do with the number of available
maintenance personnel, their respective skill levels, and the design of the unit or system.
Supportability is measured by the expected response time for logistic support and

administrative delay (OPNAVINST 3000.12, 1987). For example, how long it takes to

order and receive a new component. A more detailed explanation of 4, and its associated

factors is in Appendix B (Calculation of Operational Availability).

Similar to a squadron of P-3, a squadron of the new (notional) aircraft will deploy
on a regular basis for a specified period of time. While the notional squadron may
consist of nine aircraft, four of the nine aircraft may operate from a satellite location
away from the remaining five aircraft for a portion of the deployable period. The aircraft

and maintenance personnel operating from this satellite location is called a “detachment.”

2

All aircraft squadrons have the capability to perform O-level maintenance.
Although the notional squadron usually operates from locations (sites) providing I-level
maintenance, this is not always the case. The entire squadron may initially deploy to a
site possessing I-level support, however the detachment(s) may not have this support
available. Thus, the detachment has the difficult task of maintaining a level of readiness
necessary to accomplish assigned missions without the added support of the I-level. To

maintain a sufficient level of 4, the detachment commander must ensure the proper

quantity of maintenance personnel and spare parts are embarked in order to quickly repair
aircraft components when they fail. Aircraft parts are very expensive and available in
limited quantities. Therefore, the minimum quantity of spare parts necessary to achieve a

target or goal 4 must be calculated and embarked for the detachment. This minimum

quantity of spares is called a “spares kit” and is the minimum expected supply

expenditure necessary to achieve a particular 4, .

Like any Naval aircraft, the notional aircraft consists of components called
Weapon Replaceable Assemblies (WRAs). The official definition of a WRA, per
OPNAVINST 4790.2H, is a generic term referring to all the replaceable packages of an
avionic equipment, pod, or system as installed in an aircraft weapon system, with the
exception of cables, mounts, and fuse boxes or circuit breakers (OPNAVINST 4790.2H,
2001). However, the term WRA is most commonly used to refer to all repairable
components that can be removed and replaced on an aircraft. This thesis uses data on
449 WRAs to represent the notional aircraft. That is, each aircraft in this thesis consists
of 449 WRAs. The list of WRAs which is used to represent the notional aircraft was
obtained from NAVAIR and Naval Inventory Control Point (NAVICP) Philadelphia.

“Fully mission capable” (FMC) refers to the material condition of an aircraft such
that it can perform all of its missions. “Mission Capable” (MC) refers to the material
condition of an aircraft that can perform at least one of its missions. An aircraft can be
FMC only when all installed WRAs on the aircraft are 100 percent operational. This

thesis conducts a limited analysis of 4 as it pertains to operationally available aircraft,

budget for spares, WRA reliability, and the number of aircraft on a detachment. There
are several other factors worthy of analysis and this thesis serves as a springboard for

such inquiry.

C. METHODOLOGY

In 1998 the Department of Defense (DoD) decreed that Readiness-Based Sparing
(RBS) shall be used for weapon system support provisioning requirements computations
so that the resulting investment in supplies will meet end item readiness objectives at
minimum cost (DODINST 4140.1-R, 1998). To examine relationships between 4, cost
of spare WRAs, number of aircraft, and WRA reliability for a detachment of the notional
aircraft, it is first necessary to determine minimum cost spares kits based on the
principles of RBS. After the spares kit is determined, a simulation model is used to better

analyze the relationships of interest. The spares kit that determines a particular 4 can be

viewed as a function of the available budget.

A model called the Personal Computer (PC) Aviation Retail Requirements
Oriented to Weapon Replaceable Assemblies (ARROWSs) was used to estimate the
minimum cost spares kits used in this thesis. PC ARROWs is a RBS model for
developing consumer level inventory requirements. The model computes and evaluates
readiness-based spares and repair part requirements in support of aviation weapon
systems (Burrows, 1994). It produces a list of spare parts necessary to keep a group of

weapon systems up and running and ready to use. That is, given a target 4 goal, PC
ARROWSs produces a spares kit of WRAs to achieve the desired level of 4,. After the

spares kits are determined, another model called “SIMACE” is used to better
approximate what 4, could be achieved by the inventory produced by PC ARROWs.
SIMACE is a discrete event simulation developed by the author of this thesis. The
inventory produced by PC ARROWs is used as input into SIMACE and is the expected

minimum budget necessary to achieve the 4 simulated by SIMACE.

D. ORGANIZATION OF STUDY

Chapter II explains how the data used in this thesis was collected and how the
data is managed. Chapter III describes the simulation model SIMACE as well as the
scenario and experimental design. Chapter IV presents the results and analysis, and
Chapter V the conclusions and recommendations. Appendix A provides a glossary of

acronyms, Appendix B provides an overview on the calculation of 4, Appendix C

displays the simulation output, and Appendix D provides a copy of the SIMACE source

code.

THIS PAGE INTENTIONALLY LEFT BLANK

II. OVERVIEW OF DATA

A. DATA RESOURCES

A list of WRA National Item Identification Numbers (NIINs), which this thesis
uses to comprise the notional aircraft, was obtained from NAVAIR and Naval Inventory
Control Point (NAVICP) Philadelphia and is a collection of pre-existing P-3 and EP-3
components. The collected list of WRAS is not a true list of components that comprise
the replacement aircraft for the P-3 because the replacement aircraft does not exist at the
time of the writing of this thesis. Data is notional and is only used to illustrate the value

of the simulation tool developed in this thesis.

Several pieces of data were required for each WRA in addition to a NIIN. All of
the following information was collected by the author of this thesis from the Naval
Aviation Logistics Data Analysis (NALDA) Logistics Management Decision Support
System website (NALDA, 2003):

1) Nomenclature

2) Mean Time Between Failure
3) Mean Time to Repair

4) Unit Cost

In addition to the information above, an estimated quantity of each WRA per

aircraft was obtained from NAVAIR and NAVICP.

B. INPUT DATA AS XML DOCUMENT

After the data was collected, it was organized into Extensible Markup Language
(XML) documents for input into the simulation tool SIMACE, which is described in
Chapter III (Simulation Model Development).

XML technology is used to model data for computer processing. It is platform
and language independent, open source, license free, and has international standards.
XML technology addresses how to represent data and surrounding information to
describe its content and form thereby enhancing the data’s meaning. For example,
sections in a newspaper are differentiated by their spacing and position on the page and

7

the use of different fonts for titles and headings. XML works much the same way but

uses symbols instead of spaces and fonts (Ray, 2001).

If an input file has no boundaries or labels then a program cannot possibly know
how to treat a piece of text and distinguish it from any other piece. A newspaper without
spaces and only one font style is a large and uninteresting block of text. A computer
program would not be able to distinguish where a particular article began or end. XML

solves this problem (Ray, 2001).

Figure 1 displays a portion of one of the XML documents created for this thesis:

<WRA>
<Label>000039137</Label>
<Nomenclature>INDICATOR DETECTING</Nomenclature>
<UnitPrice>28372.00</UnitPrice>
<QtyPerAircraft>1</QtyPerAircraft>
<QtySpare>2</QtySpare>
<MTTFDistribution>Exponential</MTTFDistribution>
<MTTFValue>59678.86</MTTFValue>
<MTTRDistribution>Exponential</MTTRDistribution>
<MTTRValue>3.9</MTTRValue>
<OSTDistribution>Exponential</OSTDistribution>
<OSTValue>169.0</OSTValue>

</WRA>

Figure 1 Sample Portion of XML Document

Note that in Figure 1 there are special symbols called “markup” or “tags.” The
tag <Nomenclature> is called a start tag, and the tag </Nomenclature> is called an end
tag and they define the beginning and end of a collection of text. That is, they act as
bookends marking the beginning and end of data. Each set of “tags” and the data in-

between them are collectively called an “element” (Ray, 2001).

XML combines data into hierarchitical structures. The items in O relate to each
other in parent/child relationships. For example, elements <Nomenclature>, <Label>,

<UnitPrice>, and <OSTValue> are all children of the <WRA> element.

Data in Figure 1 are referenced by their element name thus making the querying
of data less prone to errors. That is, information formatted according to XML standards
is “self-describing” (Hunter, 2001). Looking at the data, the reader can easily locate the
information pertaining to “Nomenclature.” If the nomenclature text is needed, it is
obtained simply by calling the element <Nomenclature> which returns the text
“INDICATOR DETECTING.” Note that if element <WRA> is called, all elements
contained between the tags <WRA> and </WRA> would be returned (the child

elements).

XML is not a computer language, but a standard for creating markup languages
(i.e. tags, element names) that meet XML criteria. In other words, XML describes a
syntax that can be used for individuals to create their own unique markup language.
Individuals are able to create their own set of “tags” in which to describe their data when

using XML (Hunter, 2001).

Another value to using data stored in an XML document is that it can easily be
checked for errors prior to being used in a computer program. To do this, a schema was
developed to validate the data prior to its use. A schema is a “template” that sets the data
requirements and provides a way to define the XML document. As an XML-based
language is used for structuring XML documents, the schema describes constraints that
govern the order and sequence of data and specifies permissible value spaces for all data
used inside the document (Kim, 2003). Figure 2 displays a selection of schema

restrictions used to validate the XML documents used in this thesis:

Element Restriction

WRA Can occur multiple times, > 0 and unbounded
Nomenclature |Must occur exactly once within each WRA
Element String of any length

QtyPerAircraft [Must occur exactly once within each WRA
Element Integer value that is >= 0

UnitPrice Must occur exactly once within each WRA
Element Double value that is >= 0

Figure 2 Sample Schema Restrictions

If a required data element is missing, the schema will not validate the XML
document. Something as simple as an extra “space” character in the input file can ruin a
simulation run. Not only could an unwanted space character ruin the simulation, for large
files it could take hours, if not days, to locate the error. When validating an XML
document with a schema, the schema will find the errors for the user thus saving hours

(possibly days) of needless troubleshooting.

The XML documents created in this thesis enable the user to apply the same data
to nearly any programming language with little or no modification. If the simulation
model developed in this thesis becomes obsolete, the data can still be applied to future
programs. That is, data are structured in a robust way as to make it readable by

simulation models other than the one created for this thesis and described in Chapter III.

10

III. SIMULATION MODEL DEVELOPMENT

A. OVERVIEW

SIMACE was developed by the author of this thesis, and it is a discrete event
simulation tool that models the activity of a notional squadron of aircraft. SIMACE is
built on software named “SIMKIT” which is a Java package used to develop discrete
event-based simulations (Buss, 2002). SIMACE utilizes a model called PC ARROWs to
compute readiness-based spares and repair part requirements for secondary items stocked
in support of aviation systems and produces a list of spare parts (a “spares kit”) necessary
to keep a group of weapon systems up and running and ready to use (Burrows, 1994).
The inventory level produced by PC ARROW:s is the expected minimum budget

necessary to achieve an 4, goal. After the spares kit is determined, SIMACE is used to

better approximate what 4 can be achieved by the inventory produced by PC ARROWs.

B. THE SCENARIO

The scenarios presented in this thesis assume the notional detachment of aircraft
operate from a deployed site without I-Level support for a period of 90-days. The sortie
requirements are similar to that of a search and detection mission where 24-hour
surveillance of a particular area is required. Before one aircraft can depart the patrol

area, another aircraft must arrive to relieve the aircraft currently on patrol.

C. SIMULATION INPUTS

The model developed in this thesis requires the following input data:
NumAircraft —The number of aircraft on the detachment.

TransitTime — The flight time (hours) from the detachment’s base of operations

to the patrol area (each-way).

PatrolTime — The flight time (hours) each aircraft is required to be on patrol.
That is, the flight time each aircraft must provide search and detection operations over the

patrol area.

11

InspectionTime — The time required to conduct a post-flight inspection. Every
time an aircraft returns from a sortie it must undergo a post-flight inspection before

becoming available for another sortie.
DeploymentLength — The time length (hours) of the detachment’s mission.
MTTFSeed — A seed for the MTTF random variates.
MTTRSeed — A seed for the MTTR random variates.
OSTSeed — A seed for the OST random variates.
A list of WRAs. For each WRA the following data are required:

Label — A unique identifier for the particular type WRA. For example, all
widgets must have a label that is unique to widgets. The possibility exists
that different type WRAs can have the same nomenclature. However,
each type WRA must have a unique identifier (label) such as a part
number or NIIN.

Nomenclature — Name of the WRA.
UnitPrice — Cost of a replacement WRA, in dollars.

QtyPerAircraft (Quantity per Aircraft) — The quantity of this type WRA

that is installed on each aircraft.

QtySpare (Quantity Spare) — The quantity of this type WRA that is to be

included in the spares kit.

MTTFDistribution — The statistical distribution from which times to

failure originate. Used to produce a MTTF random variate.

MTTFValue — The parameter (mean value) of the MTTFDistribution.

Used to produce a MTTF random variate.

MTTRDistribution — The statistical distribution from which times to

repair originate. Used to produce a MTTR random variate.

MTTRValue — The parameter (mean value) of the MTTRDistribution.

Used to produce a MTTR random variate.

12

OSTDistribution — The statistical distribution from which ordering and

shipping times originate. Used to produce an OST random variate.

OSTValue —The parameter (mean value) of the OSTDistribution. Used to

produce an OST random variate.

D. MODEL ASSUMPTIONS

Most scenarios presented in this thesis assume the Exponential distribution for
MTTF, MTTR, and OST due to the lack of data to parameterize other distributions.
However, one scenario in this thesis uses the Weibull distribution for MTTF. SIMACE’s
robust design allows for the application of any probability distribution (not only

Exponential) for MTTF, MTTR, and OST, which are described next.

Reliability data (i.e. MTTF) are frequently modeled using a Weibull distribution.
Weibull distributions are often used when the rate at which failures occur increases
monotonically with the accumulation of service life. For example, the failure rates of a
hydraulic pump are believed to increase with continued usage. The longer the hydraulic
pump operations, the more likely it is to fail. The Weibull distribution takes wear from
usage into consideration whereas the Exponential distribution does not. In other words,
the Exponential distribution has a constant hazard function that does not vary with
accumulated service. For example, given a hydraulic pump’s MTTF is 1000 hours, its
expected time to failure (assuming Exponential distribution) is always 1000 hours
(Locks, 1973). The reason the Exponential is used rather than the Weibull is because the
Weibull distribution requires two parameters whereas the Exponential distribution
requires only one (the mean). The only data available at the time of the writing of this
thesis is a point estimate for the MTTF, hence the utilization of the Exponential

distribution.

The LogNormal distribution fits data corresponding to maintenance repair times
(i.e. MTTR) for complex systems and equipment. It applies to most maintenance tasks
and repair actions where task times and frequencies vary (Blanchard, 1998). Ideally,
MTTR should be distributed via a LogNormal distribution, but lack of data to

parameterize LogNormal distributions necessitates use of the Exponential for the

13

scenarios considered in this thesis. The reason the Exponential is used rather than the
LogNormal is because the LogNormal distribution requires two parameters whereas the
Exponential distribution requires only one parameter (the mean). The only data available
at the time of the writing of this thesis is a point estimate for the MTTR, hence the

utilization of the Exponential distribution.

Supply requisitioning (ordering and receiving replacement WRAs) occurs and the
amount of time to complete a requisition is an input parameter. The scenarios presented
in this thesis assume OST to follow an Exponential distribution. A better choice for the
OST distribution may prove to be the Normal distribution because shipping times often
follow a fixed amount of time with little variation (Blanchard, 1998). However, the
Exponential distribution is used to generate OST times for the same reason the
Exponential distribution is used to generate MTTR times: lack of data to parameterize a

two parameter distribution (the Normal distribution in this case).

E. EVENT GRAPH NOTATION

The various processes described in this chapter are presented graphically in
“event graphs.” Event graphs specify scheduling relationships between events. A simple
example of an event graph is presented in Figure 3. Throughout this thesis, simulation

entities are displayed in italics.

(D

Take S Q
Off Q Land
{O+} {O--}

Conditions :

(1) If an Aircraft is available for a sortie.

Figure 3 Event Graph Example

14

Figure 3 says that an Aircraft takes-off for a sortie and lands after a time duration
ts if there is an Aircraft available for a sortie. {O++} means that when an Aircraft takes-
off, the number of operating (flying) Aircraft is incremented by 1. {O--} means that
when an Aircraft lands, the number of operating Aircraft is decremented by 1. The “S”
shape in Figure 3 acts as a “conditional” for the transition to occur. That is, the Land
event will be scheduled only if an Aircraft is available for a sortie. This is the notational

convention followed for event graphs throughout this thesis.

F. SIMULATION METHODOLOGY

1. SIMACE Initialization

As described in Chapter II, SIMACE uses data stored in external XML documents
to create software objects representing various entities within the simulation. Using this
data, SIMACE instantiates a squadron of 4ircraft objects. After the squadron is
instantiated, objects representing WRAs are created. As data pertaining to each WRA is
read into SIMACE from the XML document, WRA objects are instantiated and added to a
“master list” from which copies of new WRA objects are made. MTTF, MTTR, and OST
random variates are created and it is from these random variates that new times to failure

(TTF), new times to repair (TTR), and new requisition times (OST) are generated.

Each Aircraft is assigned a unique, two-digit tail number (i.e. “00”, “01”, “12”)
which is how SIMACE references each individual Aircraft. The Aircraft are then
populated with the proper quantity of each WRA. As each WRA is installed on an
Aircraft, the newly installed WRA is assigned a TTF generated from the MTTF random

variate.

After an Aircraft is instantiated and populated with the proper quantity of each
WRA, the Aircraft is added to a queue of “ready” Aircraft. As requirements for sorties
become known, the Aircraft with the least amount of operating time (OT) is selected
from the queue of ready Aircraft and then tasked for the next sortie. OT is defined as the
number of flight hours accumulated by each individual Aircraft. Selecting Aircraft in this

manner most evenly distributes flight time and utilization among all Aircraft. If there is a

15

tie between Aircraft for the least amount of OT, the priority goes to the Aircraft with the
lowest tail number. If future research deems a change to this selection policy is

appropriate, SIMACE’s robust design allows the user to very easily make this change.

SIMACE calculates 4, by monitoring the quantity of Aircraft that are operating

(and for how long) and the quantity of Aircraft that are on stand-by (and for how long).
An Aircraft 1s defined to be operational when it is flying and is defined to be on stand-by
when ready for a sortie, but on the ground. From this data, the expected percentage of
time an Aircraft is available is calculated per (Equation B.7) located in Appendix B

(Calculation of Operational Availability).

2. The Sortie Process

SIMACE commences flight operations by immediately tasking an Aircraft for
take-off. When an Aircraft takes-off it notifies all of its WRAs that a sortie is starting and
adjusts the number of Aircraft operating and number of Aircraft on stand-by accordingly.
Immediately after taking-off, the time at which the Aircraft starts its patrol is scheduled.
This event is called “StartPatrol”. The number of flight hours to fly from the detachment

site to the patrol area is called “TransitTime” and is included as an input parameter.

Event StartPatrol schedules an event named “EndPatrol” after a time specified by
the input parameter PatrolTime. Event EndPatrol then schedules an event named “Land”
to occur after a time determined by the input parameter TransitTime. Event Land tells
the Aircraft what time to land at the detachment site. However, before the Aircraft can
depart the patrol area, another Aircraft must arrive to the patrol area to ensure continuous
coverage. This is handled by scheduling another Aircraft to be needed every time an
Aircraft takes-off on a sortie. For example, if TransitTime is two hours and PatrolTime is
eight hours, another Aircraft must be ready to relieve the Aircraft currently on patrol ten
hours after the Aircraft on patrol takes-off. Therefore, if available, an Aircraft will
always take-off “PatrolTime” after the Aircraft ahead of it takes-off. If for some reason
an Aircraft is not available at the time at which an Aircraft is needed, the Aircraft
currently on patrol returns to the detachment site at the specified time therefore leaving

the patrol area unattended.

16

During event Land, the number of operational Aircraft is reduced by one to reflect
the return of one Aircraft. WRAs on the Aircraft are then notified that the sortie has
ended and the amount of time the Aircraft operated for (sortie time) is deducted from
each WRA’s TTF. If after the adjustment of a TTF the TTF is found to be negative, the
WRA is considered failed and is added to the Aircraft’s list of failed WRAs. After all
WRA TTFs are adjusted, the Aircraft is immediately scheduled a post-flight inspection by

an event named “Startlnspect” which is described in the next section.

{SB--, O++} {O--}

M

Conditions :

Needs
Aircraft

(1) If there is an Aircrafi available for a sortie.

Figure 4 The Sortie Process Event Graph

In Figure 4, tr is the TransitTime, tp is the PatrolTime, “SB” is the number of

Aircraft on stand-by, and “O” is the number of Aircraft operating (flying).

3. The Post-Flight Inspection Process
Event StartInspect is scheduled by event Land. Event StartInpect simply

schedules an event named “EndInspect” to occur after a time specified by the input

parameter “InspectionTime”.

The Aircrafi emerges from event EndInspect in one of two conditions: FMC or
Not-Mission Capable (NMC). The Aircraft is FMC if its list of failed WRAs is of length
zero. If this is the case, the Aircraft is immediately added to the list of Aircraft ready for
a sortie in an event called “AddToReady.” If the Aircraft is NMC, it is added to a list of

17

NMC Aircraft and cannot fly until all of its failed WRAs are removed and replaced. Ifit
is determined that the Aircraft is NMC, the repair process begins by scheduling an event
named “StartAircraftRepair”.

{SB--, O++}
Conditions :
(1) If an Aircrafi is needed.)
(2) If the Adircrafi is FMC.
(3) If the Adircrafi is NMC. (SB++)

Figure 5 The Post-Flight Inspection Event Graph

In Figure 5, “O” and “SB” are defined as in the previous section. “I” is the
number of Aircraft being inspected, and t; is the InspectionTime. That is, the quantity of
time the post-flight inspection takes. The “0.0” next to some of the arrow labels in Figure

5 means that the next event is scheduled without delay.

18

4. The Aircraft Repair Process

The StartAircraftRepair event starts the Aircraft repair process. All WRAs in the
Aircraft’s list of failed WRA s must be checked against the spares kit inventory. If a
spare WRA matching that of a failed WRA is in stock in the spares kit, the spare WRA is
removed from the inventory and a TTR generated from the MTTR random variate. This
is done for each WRA on the list of failed WRAs and the generated TTRs are then
summed. This sum is the amount of time necessary to repair the Aircraft. That is, the
amount of time required for the repair process. The quantity of maintenance personnel
(technicians) with the appropriate skill levels is assumed to be present. If a replacement
WRA is not found to be in stock in the spares kit, the Aircraft is considered to be awaiting
parts (AWP) and the failed WRA is added to the Aircraft’s AWP list. An event named
“EndAircraftRepair” is then scheduled as determined by the summed TTR.

If at the conclusion of event EndAircraftRepair the Aircraft is found to have
WRAs that have not arrived from the requisition process, that is, the Aircraft has WRAs on
its AWP list, the Aircraft remains idle until a WRA arrives that it needs. If a WRA arrives
for this Aircraft while the Aircraft is in an active state of repair, the WRA is added to a list
of additional WRAs that need to be installed at the conclusion of the current active repair
session. If at the end of a repair session the Aircraft is found to have additional WRAs to
install, TTRs for these additional WRAs are summed and another EndAircraftRepair
event is scheduled per the newly summed TTR. This process repeats until the Aircraft is
found to have all of its failed WRAs completely removed and replaced. When all of an
Aircraft’s WRAs are re-installed, the Aircraft is considered FMC, removed from the list
of NMC Aircraft, and added to the list of Aircraft ready to fly a sortie. When a WRA is
installed on an Aircraft, a new TTF is generated from the appropriate MTTF random

variate.

19

Conditions :

(1) If an Adircrafi isneeded.

(2) If the Aircraft is FMC. {SB--, O++}

(3) If the Aircrafi is NMC.

(4) If replacement WRAs
are available in the spares e
kit.

(5) If there are additional {SB++}
WRAs that need installing
onthe Aircraft .

(6) If the Aircrafi is FMC.

@)
{I++}

-}

©C

0.0

Figure 6 The Aircraft Repair Event Graph

In Figure 6, “SB, O, 1,” and t; are defined as in previous sections and tg is the

RepairTime.

20

A WRA must be requisitioned to either replace the WRA removed from the spares
kit or to replace the WRA not found to be in the spares kit inventory. SIMACE names the

process of requisitioning a replacement WRA the “OST process”.

5. The OST Process

WRAs are requisitioned to replace a WRA removed from the spares kit or to
replace a WRA not found to be in the spares kit and therefore directly needed by an
Aircraft. When a WRA is requisitioned, it sent to the detachment from an off-site location

which causes a logistics delay time, called “ordering and shipping time” (OST).

When the need for a WRA exists, an event called “StartOST” is immediately
scheduled. The OST random variate determined from the input data generates the
amount of time to complete a requisition. The “EndOST” event is then scheduled for a

duration determined (generated) by the OST random variate.

End

AIC
'&pair

CDo=

Conditions :

(1) If any needed WRAs are
in the spares kit inventory.

(2) If the WRA that just
arrived is needed by an
Aircraft not currently being
worked on.

CO®B

Figure 7 The OST Process Event Graph

21

In Figure 7, tg is defined as in previous sections and tost represents the OST time

for the WRA.

When a WRA arrives from the OST process, it is assigned to the Aircraft that will
become FMC the quickest upon its receipt. The criterion used to determine the Aircraft
most in need is by total number of AWP WRAs. That is, the newly arrived WRA is
assigned to the Aircraft that has the least total number of AWP WRAs. If there is a tie for
total number of AWP WRAs, the criterion selects the Aircraft with the most NMC time.
If there is a tie between total number of AWP WRAs and the most NMC time, the
criterion selects the Aircraft with the lowest tail number. An Aircraft’s NMC time begins
when the Aircraft is added to the list of NMC Aircraft (during event EndInspect) and
ends upon its removal from the list of NMC Aircraft (during event EndAircraftRepair).

If SIMACE determines that no Aircraft are in need of the newly arrived WRA, the WRA is
assumed ordered as a replenishment item for the spares kit. In this case, the newly

arrived WRA is added to the spares kit inventory.

G. EXPERIMENTAL DESIGN
The specific scenarios examined in this thesis assume a TransitTime value of 2-

hours and a PatrolTime of 8-hours. Thus, the total time for each sortie is 12 flight hours.

Since the notional squadron is operating from a location distant to a supply
warehouse, the scenarios assume OST to be Exponentially distributed with a mean of 169
hours (the number of hours in 1 week). While SIMACE allows for each WRA to have a
different OST distribution, the scenarios assign all WRAs the same OST distribution of
Exponential with mean 169. Of course, these values can be easily changed because of

the robust design of SIMACE.

Using PC ARROWs, spares kit inventories were calculated, each forming a
minimum cost spares kit inventory. Each of these spares kits (budget levels) was then
run 100 times on SIMACE. The results were then plotted as to better visualize the cost
and A relationship. The first portion of Chapter IV presents a brief comparison of PC
ARROWSs and SIMACE since output from PC ARROWs is used as input for SIMACE.

Subsequent sections of Chapter IV present a few relationships (case study excursions)

22

involving a 90-day detachment of the notional aircraft. The first case study involves a
detachment of four Aircraft with unmodified data (the Base Case). The second case
study involves a detachment of five Aircraft with unmodified data (Case A). The third
case study involves a detachment of four Aircraft, but whose data is modified (Case B).
While Case B has four Aircraft on the detachment, the data is modified by improving the
50% lowest performing WRA failure times by 25% thereby increasing each affected WRA
cost by 50%.

The scenarios assume each Aircraft added to the detachment incurs an additional
cost of $50 million, which includes the cost of the additional 4ircraft and the
personnel/equipment that are necessary to support it. The cost of improved reliability
affects the cost of each Aircraft as well. The additional cost per Aircraft incurred by
improving the 50% lowest performing WRA failure times by 25% thereby increasing their
cost by 50% is $4.77 million. This dollar amount was found by totaling the value of all
WRASs installed on an Aircraft, with and without WRAs possessing improved reliability,

and the difference calculated.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. RESULTS AND ANALYSIS

A. INTRODUCTION TO RESULTS

The purpose of Chapter IV is to present results and analyses as introduced in
Chapters 1, II, and III and presents the data via figures. Please refer to Appendix C
(Simulation Output) for the tables containing the data used to generate the figures in this
chapter. For reviewing purposes, the spares kits are created in PC ARROWSs and the
analysis done using SIMACE.

This chapter first presents a brief comparison of PC ARROWs and SIMACE.
The analysis continues with a comparison of the Base Case (4 Aircraft, unmodified data)
against Case A (5 Aircraft, unmodified data), and Case B (4 Aircraft, improved WRA
reliability) in order to determine if it is a better value to support an additional Aircraft at a
cost of $50 million or pay more for increased WRA reliability with an additional cost of

$4.77 million per Aircraft.

For each of the scenarios (case studies) presented in this chapter, minimum cost

spares kit inventories (budget levels) to achieve 4 goals were calculated. 4, goals were
started at 0.0 and incremented by 0.04 (4%) up to where 4 levels would not improve as a

result of increasing the budget. Calculating spares kit inventories in this manner results
in 162 spares kit inventories being calculated by PC ARROWSs and evaluated using
SIMACE. To facilitate the simulation of these data, each inventory listing is contained in
its own unique XML document. Handling spares kit inventories in this manner facilitates

the automation process of SIMACE.

25

B. PRESENTATION OF RESULTS

1. Relationship of SIMACE and PC ARROW:s

Before the Base Case, Case A, and Case B are discussed, the relationship of
SIMACE and PC ARROWs is presented. The first simulation runs were done to gain
insight into the relative behavior(s) of SIMACE and PC ARROWs .

The figures that follow are labeled according to the following format:
(TransitTime, PatrolTime, InspectionTime). For example, a label of “(2.0, 8.0, 2.0)”
means that each Aircraft has a TransitTime to and from the patrol area of 2.0 hours, a
PatrolTime of 8.0 hours, and a post-flight InspectionTime of 2.0 hours. Another example
is (0.0, 8.0, 0.0)" which is interpreted as a TransitTime to and from the patrol area of 0.0

hours, a PatrolTime of 8.0 hours, and a post-flight InspectionTime of 0.0 hours.

The relationship between SIMACE and PC ARROWs is presented via two cases:
Case Y and Case Z. Case Y investigates a TransitTime, PatrolTime, and InspectionTime
of (0.0, 8.0, 0.0), respectively. Case Z investigates a TransitTime, PatrolTime, and
InspectionTime of (2.0, 8.0, 2.0), respectively.

Case Y and Case Z are run on SIMACE using two different methods for
comparison with PC ARROWs:

Method 1) Assuming Exponentially distributed MTTF, constant MTTR, and
constant OST (closest approximation to PC ARROWs).

Method 2) Using Exponentially distributed MTTF, Exponentially distributed
MTTR, and Exponentially distributed OST.

Note the flight hour goal for Case Y is 2160 flight hours because of the
TransitTime to and from the patrol area of 0.0 hours and the post-flight InspectionTime
of 0.0 hours. That is, the TransitTime is not included in the calculation of the number of

flight hours flown:

26

90 days x 24 hours =2160 required flight hours (Equation 4.1)

day

The flight hour goal for Case Z, as well as in the Base Case, Case A, and Case B,
is 3240 flight hours as determined by the following equations:

90 days x 24 hours =2160 required patrol hours (Equation 4.2)

day

2160 required patrol hours

— =270 sorties (Equation 4.3)
8 patrol hours per sortie

270 sorties x 4 hours transit time per sortie

(Equation 4.4)
=1080 transit hours

2160 patrol hours + 1080 transit hours

. (Equation 4.5)
= 3240 flight hours

Each simulation (design point) is determined by making 100 repetitions of

SIMACE. An 4, is observed for each repetition and after the 100 repetitions, statistics

were collected. Please refer to Appendix C for output data. On the figures that follow
pertaining to Case Y and Case Z, information corresponding to Method (1) is labeled as
“Constant” because of the constant MTTR and constant OST. Information corresponding
to Method (2) is labeled as “Variable” because of the Exponentially distributed MTTR
and Exponentially distributed OST. In both cases, the MTTF is treated as originating

from an Exponential distribution.

27

A, vs. Spares Cost
Case Y: (0,8,0)
0.9
B Rl el 1
0.7 /
0.6 f
¢ 0.5 / --x--ARROWSs
0.4 —— Constant
——Variable
0.3 -
A
0.2 4
,/.A
i
0.1 :
&A
00 T T T T T
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Spares Cost ($Millions)

Figure 8 Case Y: (0, 8, 0)

Figure 8 shows that SIMACE produces results very similar to that of PC
ARROWSs. However, there is a slight disparity between SIMACE and PC ARROWSs
when the 4 goal is low. A possible reason for this is that SIMACE captures the fact that
with zero WRASs in the spares kit inventory, there still remains a small degree of 4, in the
system (inherent availability). When SIMACE begins a simulation run, all Aircraft are
assumed to be operationally available, which is in keeping with how detachments operate
in real, operational environments. That is, all WRAs are fully functioning on day one. It
is only after flight operations begin that WRAs fail and must then be requisitioned. PC
ARROWs, on the otherhand, uses steady-state methodology and does not capture
inherent availability. Analysis suggests SIMACE produces a higher estimated 4, than PC
ARROWs (statistically significant at level a =0.05) at lower spare kit inventories for the

reasons described above.

28

SIMACE under Case Y (0, 8, 0) did not produce a statistically significant
difference between using constant MTTR and constant OST vice variable MTTR and
variable OST under the assumption of the variation originating from an Exponential
distribution. However, using distributions other than the Exponential may produce

different results as is demonstrated later in this chapter.

Figure 9 shows a difference between the 4 estimates from SIMACE and those

from PC ARROWSs near the end points under Case Z (2, 8, 2):

A, vs. Spares Cost
Case Z: (2,8,2)

0.9

--&--ARROWs
—+— Constant
—»—Variable

0.0 4= : : : :
0.0 5.0 10.0 15.0 20.0 25.0

Spares Cost ($Millions)

Figure 9 Case Z: (2, 8, 2), without InspectionTime

In Figure 9, a possible reason for the difference on the low end (as with Figure 8)
is SIMACE capturing the fact that there exists inherent reliability. A possible reason for

the difference on the high end may be due to differences in how 4, is computed in the two

models. For example, SIMACE does not count InspectionTime as contributing

to A whereas PC ARROWSs does. Figure 10, below, shows how including
InspectionTime as a contributor to 4 increases the estimates of SIMACE thereby

causing a closer fit of the two models:

29

Case Z: (

0.9

A, vs. Spares Cost
2,8,2), With Inspection Time

0.8 -

0.7 /
0.6

05 1 o --&--ARROWSs
< & —— Constant

0.4 ‘,'A ——Variable
0.3 ra
0.2 ,"‘

A

&
0.1 ¢

(_A'
0.0 # T T T T
0.0 5.0 10.0 15.0 20.0 25.0
Spares Cost ($Millions)

Figure 10 Case Z: (2, 8, 2), with InspectionTime

The comparison of SIMACE to PC ARROWs is now complete and it is

concluded that SIMACE operates as intended. The remaining sections of Chapter IV

utilizes SIMACE to evaluate investment trade-offs using 4, estimates as formulated in

Case Z (without InspectionTime) (Figure 9). That is, comparisons between the Base
Case (4 Aircraft, unmodified data) against Case A (5 Aircraft, unmodified data), and

Case B (4 Aircraft, improved WRA reliability) are made based on the calculation of 4, as

presented in Appendix B and modeled by SIMACE. Actual verification of the results

with other models, to include PC ARROWs, is left for further research.

30

2. Base Case: 4 Aircraft, Unmodified Data
The Base Case (4 Aircraft, Unmodified Data) is used to compare against the

excursions of Case A and Case B that follow.

A, vs. Spares Cost
Base Case

0.9

0.8 -

0.7

06 -
0.5 -
<
04 -
0.3 1
0.2 1

0.1 1

0.0

0.0 5.0 10.0 15.0 20.0 25.0
Spares Cost ($Millions)

Figure 11 Base Case: (2, 8, 2), 4 Aircraft, Unmodified Data

Figure 11 is exactly the same data labeled as “Variable” in Case Z (Figure 9) and

shows there is a limit to 4, (0.7064) even with an infinite spares budget. This value is

found by running SIMACE with a spares kit inventory higher than would ever be needed
for each WRA over the course of the 90-day detachment (quantity of 100 for each WRA).

Likewise, the calculation of minimum 4 is found by running SIMACE with a spares kit

inventory of zero (quantity of 0 for each WRA).

31

3. Case A: 5 Aircraft, Unmodified Data

In this excursion, Case A (5 Aircraft, Unmodified Data), the value of adding a

fifth Aircraft is evaluated in terms of improved 4, . Figure 12, below, displays the

relationship of the Base Case and Case A with respect to spares cost:

A, vs. Spares Cost
Base Case with Case A

0.9

08
0.7 —

0.5
——Base Case
<

04 1 ——Case A
0.3 /
0.2
0.1

y/
0.0

0.0 5.0 10.0 15.0 20.0 25.0
Spares Cost ($Millions)

Figure 12 Base Case with Case A (5 Aircraft, Unmodified Data)

32

A major portion of the projected life-cycle cost for a given system results from the
consequences of decisions made during early planning and as part of system conceptual
design (Fabrycky, 1998). Figure 13, below, displays the relationship of the Base Case

and Case A with respect to total cost (spares cost and Aircraft acquisition cost):

Ao vs. Total Cost
Base Case with Case A

0.9

0.8

07 e e

0.6
o 0.5 /"".’ f}?{ —e— Base Case
< 04 —%—Case A

03 & X

02 1 £

01y £

0.0 T T T T T T T

200 210 220 230 240 250 260 270 280

Total Cost ($Millions)

Figure 13 Base Case with Case A, 4, vs. Total Cost

Figure 13 may initially appear it is not cost-effective to purchase the 5™ Aircraft.
However, in addressing this economic issue one must look at total cost in the context of

the overall life cycle. For example, note in Figure 12 that to achieve an 4 of 0.6963 in

the Base Case, it is necessary to pack a spares inventory valued at $21.77 million. Note
also that in order to achieve an 4 of 0.6981 in Case A, it is necessary to pack a spares
inventory valued at $10.05 million. This means that additional funds, called recurring
costs, of as much as $11.72 million must be budgeted above that of Case A (5 Aircraft)
when choosing the Base Case (4 Aircraft) every time there is a 90-day detachment. This
assumes that all spares in the prior detachment’s spares inventory were used, which is

unlikely.

Not only is the spares budget lower for Case A with respect to the Base Case for
approximately the same level of 4, (in this example approximately 0.70), but the spares
inventory “footprint” is lower for Case A than for the Base Case. Under the Base Case

(with 4, = 0.6963), there are 615 WRAs in the spares inventory and under Case A

33

(with 4, = 0.6981), there are 369 WRAs in the spares inventory. There are less WRAs

necessary in Case A’s spares inventory because fewer flight hours are being accumulated
per WRA compared to the Base Case. Fewer flight hours per WRA suggests the quantity
of maintenance personnel can be reduced in Case A thereby reducing personnel cost.
Reducing the quantity of flight hours per WRA also reduces the quantity of supply
requisitions thereby reducing logistics delay time and the cost to transport replacement
WRAs from various points of origin to the detachment site. This would also reduce the
quantity of Aircraft providing logistical support to the detachment thereby increasing the
quantity of Aircraft available for operational missions. Case A requires a greater up-front
investment (an additional $50 million) than the Base Case, thus this excursion suggests it
may be of greater value to invest in the additional Aircraft because of the reduced

recurring costs as described above.

While in this thesis SIMACE is being used to model a limited deployment of 90-
days for 4 and 5 Aircraft, it may be possible for SIMACE to aid in total life cycle cost
analysis with additional modifications made possible by its extensible design. Examples
of how SIMACE may be extended include adding a module which monitors the quantity
of each type WRA that is removed and replaced for the time period specified by the user
(SIMACE input parameter = DeploymentLength) thus aiding in the analysis of the
quantity of maintenance personnel necessary to man each work center (personnel cost).
A more detailed analysis of personnel costs could be conducted by adding another
module to SIMACE modeling the actual activity of personnel within each work center
(queues of maintenance workers). SIMACE may also be run for several scenarios to
model activities at different bases of operation. Using SIMACE in this manner could
assist in determining the quantity of Aircraft necessary to meet ongoing fleet wide

operational and training requirements (“fleet sizing”).

4. Case B: 4 Aircraft, Improved Reliability

In this excursion, Case B (4 Aircraft, Improved Reliability), the value of

improved reliability in terms of improved 4, is investigated. Figure 14, below, displays

the relationships of the Base Case, Case A, and Case B with respect to spares cost:

34

A, vs. Spares Cost
Base Case with Case A, Case B
0.9
0.8
07 n //?A—i_—‘
0.5 A —+—Base Case
< —Case A
0.4 -=—Case B
0.3
0.2
0.1+
[
0.0 T T T T
0.0 5.0 10.0 15.0 20.0 25.0
Spares Cost ($Millions)

Figure 14 Base Case with Case A, Case B (4 Aircraft, Improved Reliability)

Figure 15, below, displays the relationships of the Base Case, Case A, and Case B

with respect to total cost (spares cost and Aircraft acquisition cost):

Ao vs. Total Cost
Base Case with Case A Case B

0.9
0.8
0.7 4
0.6 4
0.5
0.4 4
0.3 4
0.2
0.1
0.0 T T T T T T T

200 210 220 230 240 250 260 270 280

Total Cost ($Millions)

—+— Base Case
—«—Case A
—=— Case B

Ao

Figure 15 Base Case with Case A and Case B, 4, vs. Total Cost

35

Note that in comparison to the Base Case, Case B requires an additional upfront
investment of $4.77 million per Aircraft due to the cost associated with increased

reliability:

$4.77 million x 4 Aircraft = $19.08 million (Equation 4.6)

Thus, the additional investment (baseline) for Case B is $19.06 million more than

the Base Case scenario.

Figure 15 may initially appear to show it is less value to pay 50% more for a
MTTF improvement of 25% for the 50% least reliable WRAs as in Case B than it is to
follow the assumptions of the Base Case (4 Aircraft, Unmodified Data). However, as in
the relationship of the Base Case to Case A, this may not be entirely true. For example,

note in Figure 14 that to achieve an 4 of 0.6963 in the Base Case it is necessary to pack a
spares inventory valued at $21.77 million. Also note that in order to achieve an 4, of

0.6915 in Case B it is necessary to pack a spares inventory valued at $14.35 million. To
achieve approximately the same level of 4 , additional funds of $7.42 million must be
budgeted above that of Case B (4 Aircraft, Improved Reliability) with respect to spares
cost when choosing the Base Case (4 dircraft, Unmodified Data). As described in the
previous section, this may have implications if total life cycle costs are considered vice

that of a 90-day detachment.

Not only is the spares cost lower for Case B with respect to the Base Case for an
A, of approximately 0.70, but the spares inventory “footprint™ is lower for Case B than
for the Base Case. For example, under the Base Case (with 4, = 0.6963), there are 615
WRASs in the spares inventory and under Case B (with 4 = 0.6915) there are 349 WRAs
in the spares inventory. Improving reliability, as in Case B, lowers the quantity of spare
parts necessary to achieve approximately the same level of 4, in the Base Case. Not only

would reducing the spares inventory as a result of improved reliability lower the logistics

requirement for transporting it from place to place, it would also lower the quantity of
36

requisitions over the course of the deployment period. In addition, improving reliability
may reduce the quantity of personnel necessary to man each work center thus reducing
personnel costs. As described in the previous excursion, future modifications to

SIMACE will enable it to conduct a more detailed analysis of personnel costs.

Note that while the quantity of WRAs in the spares inventory is reduced in Case B,
the average cost per WRA is actually more than that of the Base Case. For example,

under the Base Case (with 4, = 0.6963), there are 615 WRAs valued at $21.77 million in
the spares inventory and under Case B (with 4 = 0.6915) there are 349 WRAs valued at
$14.35 million in the spares inventory. For approximately the same level of 4, , the

average cost per WRA for the Base Case is $0.0354 million and the average cost per WRA
for Case B is $0.0411 million. The average cost per WRA is more for Case B than for the
Base Case, but note that Case B requires a lower budget for spares due to the cost

associated with increasing reliability.

Under Case A (4, = 0.6981), there are 369 WRAs valued at $10.05 million in the

spares inventory. This implies that the average cost per WRA for Case A is $0.0272

million. If an 4, goal of approximately 0.70 is desired, it is necessary to budget an

additional $4.30 million (recurring) for spares when choosing the scenario of Case B over

Case A.

When considering only a single segment of life-cycle cost (such as budget for
spares), one must be sure that decisions are not based on that one segment alone without
the consideration of the overall effects on total life-cycle cost (Fabrycky, 1998). Life-
cycle costing includes a variety of factors reflecting different types of activities.
SIMACE is a simulation model that can immediately assist in the analysis of several of
these factors and can be expanded in the future by adding modules as the need for more

detailed analyses grows.

37

5. Application of the Weibull Distribution to MTTF
The purpose of this section is to demonstrate the flexability of SIMACE by
replacing the Exponential distributions with Weibull distributions for the MTTF in the

Base Case.

As previously stated in Chapter III (Simulation Model Development), reliability
data such as MTTF are frequently modeled using a Weibull distribution. However, the
scenarios presented in this thesis have thus far only used the Exponential random variate

to generate TTFs due to the lack of data to parameterize other distributions.

The two-parameter Weibull distribution is defined by a shape parameter called
“alpha” (@) and a scale parameter called “beta” (8) which are both defined on [0,).
The Weibull distribution is the same as the Exponential distribution when & =1. That is,
[is simply the mean of the Exponential distribution when & =1. Shape parameters
(@) greater than one are used to illustrate “wear-out” characteristics of components. To
approximate Weibull distributions from the pre-existing MTTF point estimates, this
thesis uses a value of @ =1.2 for all MTTF Weibull random variate approximations. A
value of @ =1.2 is chosen because previous research shows this value is adequate to
represent “wear-out” chacteristics (Werenskjold, 1998). The investigation into the effects
of stronger degrees of “wear-out”, thus higher values of the shape parameter &', is left for

further research.

Weibull random variate means are given by the following equation (Law, 2000):

r (lj (Equation 4.7)

38

Since in this study a is always assigned the value of 1.2, (Equation 4.7) becomes:

B (1 I :
= £ T —| = £ x1.1288 = B x 0.9407 Equation 4.8
712 T 2) Tz b (Fquation £.5)

Therefore, a S is calculated for each MTTF according to (Equation 4.9):

g = 096:07 (Equation 4.9)

where 4 is the mean of the MTTF Exponential random variate being converted.

Figure 16 is a dual plot of the Base Case showing the effect of using the Weibull

random variates vice the Exponential random variates in the generation of TTFs:

A, vs. Spares Cost
Base Case (Exponential MTTF) & Base Case (Weibull MTTF)
0.9
0.8
0.7 x
06 | ///
< 0.5 = Exponential MTTF
0.4 1 ——Weibull MTTF
0.3
0.2 ///
0.1
4
00 T T T T
0.0 5.0 10.0 15.0 20.0 25.0
Spares Cost ($Millions)

Figure 16 Base Case (Exponential MTTF) and Base Case (Weibull MTTF)

39

Analysis of Figure 16 reveals there is a statistically significant difference (at level

a =0.05) between all 4 estimates generated using the Exponential distribution and those

generated using the Weibull distribution. That is, in this case the Exponential distribution

is more conservative than the Weibull distribution. A4, as a function of Total Cost

(dircraft and spares costs) is not examined because both curves in Figure 16 originate
from the Base Case (4 Aircraft, Unmodified Data). A copy of the simulation output used
to generate Figure 16 is included in Appendix C (Simulation Output).

This example is a presentation of the significantly different results that may be
obtained by using distributions other than the Exponential. Thus the assumption about
the distribution of the MTTF random variate is critical and is a strong reason why data
collection systems should provide more information than just the mean. The testing of

additional distributions is left for further research.

40

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis was to create an upgradeable simulation tool that can be
used to investigate relationships that affect cost and operational availability of the P-3
replacement aircraft (notional) on a deployment and exercise the simulation tool to

evaluate trade-offs in achieving various levels of 4 . The purpose of exercising the tool

was to show its flexability and value as a “proof of concept” for future analyses. The
specific results should be seen as representational of the kinds of analysis that can be

done with SIMACE.

The analysis presented in Chapter IV suggests that under the assumption of cases
investigated in this thesis, it may be of greater long-term value to invest funds in an
additional Aircraft than to invest in increased reliability (improving the 50% lowest
performing WRAs by 25% at an increased cost of 50%). However, there is more that
goes into estimating life cycle costs than just the consideration of the spares inventory.
Emphasis should rest not just on an individual cost element such as spares cost, but rather
on total life cycle cost. SIMACE can be expanded to assist in a more detailed analysis of
factors that affect total life cycle cost for not only the replacement Aircraft for the P-3,

but for any Aircraft a user has appropriate data for.

PC ARROWs creates minimum cost spares kits based upon the assumption that
the requisition system, and WRA failures, behave according to a Poisson process. In

reality, requisition systems and failure times may not always follow this assumption.

This thesis presented one scenario using Weibull random variates instead of
Exponential random variates to generate TTFs. The results detected a statistically

significant difference (at level a =0.05) between what the two distributions produced in
terms of 4, estimates. This shows that using distributions other than the Exponential are

capable of producint significantly different results.

More replications of SIMACE simulation runs do not produce statistically

significant results at level a =0.05. This comparison was made using results obtained

41

from 100 simulation runs and 500 simulation runs for each design point. Due to the
amount of time each simulation run takes, the testing of higher simulation repetitions is

left for additional research.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

There are a number of items that SIMACE does not take into consideration due to
the time constraints of completing this thesis. However, SIMACE is developed in such a
way that it can be easily modified to incorporate additional properties that could possibly
do a better job of modeling an authentic operating environment. Below are some

recommendations to enhance the “resolution” of SIMACE:
Incorporate both a priority OST and a routine OST.
Use more realistic random variate distributions as discussed in Chapter I11.

It may be desirable to schedule the removal and replacement of some WRAs
during the detachment. For example, an engine may be scheduled for removal and
replacement after 2000 flight hours in order to minimize the probability of a failure
during flight. This is a desired property if SIMACE is developed into more of a “steady-

state” model.
An I-Level maintenance process should be incorporated into the model.

SIMACE may possibly assist in the efforts to determine a statistical model for
forecasting aircraft utilization rates to assist in the improvement of the “productive ratio”

of Naval aviation’s aircraft inventory.

Another method to approximate the relationship between budget for spares, OST,

MTTF, 4, etc. may be to utilize one or more of the robust simulation techniques

developed over the past few years: Professor Jack Kleijnen of Tilburg University (The
Netherlands) researches robust solutions aimed at finding appropriate values for the
factors that decision makers can control, while accounting for the randomness of the
uncontrollable environmental factors. He uses Latin Hypercube sampling, estimates the

controllable factor values that minimize the output’s expected value and variance, derives

42

a confidence region, and selects a robust solution. Professor Bruce Schmeiser of Purdue

University estimates a function at any specified point by using stochastic root finding via

retrospective approximation. The possibility exists that SIMACE could be transformed
into a stand-alone RBS tool by applying one of the above, or possibly other, advanced

simulation techniques.

Developing a simulation model is a very difficult and time-consuming endeavor
even for the most “trivial” of logistical processes. Perhaps Dr. Sherbrooke, formerly of
the Logistics Management Institute, summarizes this difficulty the best:

In logistics applications, we know that all of our data are estimates:

demand rates, costs, lead times, repair times, Pr{local repair capability},

etc. We know that we will never hit the projected availability or cost

precisely in the real world, regardless of the degree of mathematical
sophistication employed. (Sherbrooke, 2000)

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

APPENDIX A. LIST OF ACRONYMS

A Operational Availability

ARROWS Aviation Retail Requirements Oriented to Weapon
Replaceable Assemblies

AWP Awaiting Parts

FMC Fully Mission Capable

LMDSS Logistics Management Decision Support System

MADT Mean Aircraft Down Time

MC Mission Capable

MDT Mean Down Time

MLDT Mean Logistics Delay Time

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

NALDA Naval Aviation Logistics Data Analysis

OoT Operational Time

NAVAIR Naval Air Systems Command

NAVICP Naval Inventory Control Point

NIIN National Item Identification Number

NMC Not-Mission Capable

PC ARROWS Personal Computer Aviation Retail Requirements Oriented
to Weapon Replaceable Assemblies

RBS Readiness Based Sparing

RNG Random Number Generator

ST Stand-By Time

TTF Time to Failure

TTR Time to Repair

WRA Weapons Replaceable Assembly
XML Extensible Markup Language

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

APPENDIX B. CALCULATION OF OPERATIONAL
AVAILABILITY

The purpose of Appendix B is to give the reader a better understanding of 4 by

providing an overview of some of the various methods used to calculate 4, .

A, as used in this thesis represents the expected percentage of time that a weapon

system will be ready to perform satisfactorily in an operating environment when called

for at any random point in time (OPNAVINST 3000.12, 1987).

A, can be expressed most fundamentally by the following equation:

uptime _ _uptime

A = (Equation B.1)

uptime + downtime total time

Uptime is the time during which the system is in condition to perform its required
functions. Downtime is the time during which the system is not in condition to perform
its required functions. The “system” in question throughout this thesis is the P-3
replacement aircraft (notional) and if it is not capable of functioning it is considered not-

mission capable (NMC).

Although (Equation B.1) may provide a reasonably accurate estimate of 4 it does

not provide the level of detail necessary to determine what specific factors affect it. To

determine causes of poor 4 _, the effects of controllable factors on uptime and downtime

must be determined with respect to reliability, maintainability, and supportability. Each

of these is defined as follows:

Reliability is the probability that an item can perform its intended function
for a specified interval under stated conditions. It is controllable primarily
by design and secondarily by ensuring that a system is used in the manner
for which it was designed.

Maintainability is the measure of the ability of an item to be retained in or
restored to specified condition when maintenance is performed by

47

personnel having specified skill levels, using prescribed procedures and
resources, at each prescribed level of maintenance and repair.

Supportability is the ability to satisfy material and administrative
requirements associated with restoring the operation of failed system or
equipment (OPNAVINST 3000.12, 1987).

(Equation B.1) can now be broken down to the following:

_ MTBF
” MTBF +MDT

(Equation B.2)

where MTBF = mean time between a system failure and MDT = mean down time
of the system. MTBF is defined as the total time that the system is in an “up” status
divided by the number of failures during that time period. MDT is defined as the total
time the system is in a “down” status divided by the number of failures during that time
period. MTBF is interpreted as the uptime and MTBF + MDT is interpreted as the fotal

time.

The maintenance component of 4, is the average amount of time required to repair

a failed WRA at the organizational level (O-level) of maintenance when all resources are
available. Call this the mean time to repair (MTTR). The supply (logistical delay)
component is the average amount of delay caused by the logistical support system. Let

this be the mean logistical delay time (MLDT).

With respect to reliability, maintainability, and supportability, MTBF is a measure
of reliability, MTTR a measure of maintainability, and MLDT a measure of

supportability. Now (Equation B.2) can be modified to following:

4 = MTBF
’ MTBF + MTTR + MLDT

(Equation B.3)

48

Systems can be described as falling into one of three categories: continuous-use,
intermittent use, or impulse. Continuous-use systems are systems that are always in use.
For example, cell phone towers and an emergency exit sign inside an office building.
Intermittent-use systems are systems that have long periods of stand-by time between
operational uses. For example, a car, computer printer, or aircraft. Impulse systems are
systems that are usually used once or for an extremely short period of time between uses

such as the starter on an automobile.

For continuous-use systems, mean-calendar time between failures (MCTBF) is
the same as mean operating time between failures (MOTBF) because the system is
always in use. In addition, the use of MTBF is consistent with the idea of measuring
uptime in terms of calendar time. This is convenient since all downtime is measured in
terms of calendar time. For continuous-use systems, (Equation B.3) should be used for

the calculation of 4 .

For intermittent-use systems such as car headlights, MOTBF is not the same as

MCTBF, so the MTBF must be weighted. For aircraft systems, 4, is commonly defined

as:

+
o=1- MTTR + MLDT (Equation B.4)
K'(MTBF)
where
MTBF = _UPTIME (Equation B.5)
#FAILURES
and

49

'

_ TOTAL CALANDAR TIME
TOTAL OPERATING TIME

(Equation B.6)

Note: K' is the inverse of the utilization rate.

(Equation B.1) through (Equation B.6) are used for systems where the MTTF,
MTTR, and MLDT are known quantities of the system. While this thesis could use
(Equation B.4) through (Equation B.6) for the calculation of 4, , the model developed in
this thesis collects “real time” data via a simulation vice estimating the individual
parameters of system MTTF, system MTTR, and system MLDT. This thesis uses
(Equation B.7) to calculate 4, :

__ OT+ST
° TOTAL TIME

(Equation B.7)

where TOTAL TIME (the denominator) equals the sum of operational time (OT),
stand-by time (ST), total corrective maintenance time, total inspection time, and total

logistics delay time.

Impulse-use systems calculate 4, as follows:

_ TOTAL NUMBER OF SUCCESSES
° TOTAL NUMBER OF ATTEMPTS

(Equation B.8)

It is important to note the difference between the aircraft status of “FMC” and that
of “operational available.” An aircraft considered to be FMC does not necessarily mean
the aircraft is operationally available. When tracking aircraft status, fleet squadrons
commonly assign the status of an aircraft in the morning and for reporting purposes the
aircraft has this status for the next 24-hour period regardless of the aircraft’s operational

availability. For example, an aircraft is assigned as FMC at 0700 13 February 2003 holds
50

this status until the next morning at 0700 because the following day is a weekday. If the
reporting period begins at 0700 on a Friday, the aircraft will hold its status until Monday
morning at 0700. This thesis assumes 24-hour coverage in a wartime scenario and will
collect data not based upon an aircraft’s status every morning at 0700, but will

continuously observe and collect the data required by (Equation B.7) to calculate 4, .

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

APPENDIX C. SIMULATION OUTPUT

The purpose of Appendix C is to display the data used to generate the charts
throughout this thesis. The first column in each table (Goal A) represents the 4 goal

provided to PC ARROWs in order to calculate the minimum cost spare kits. The second
column (Spares Budget) is what PC ARROWs determines to be the cost of the spares kit

to meet the 4, goal. The third column is simply the Spares Budget in units of millions of
dollars. The fourth column (ARROWs 4,) is the 4 obtained by PC ARROWSs. Please
note that this value may not be exactly the same as the “Goal 4,.” The fifth column
(SIMACE mu 4,) represents the mean 4, obtained from 100 repetitions of SIMACE for
that particular spares kit. Note that the calculation of 4, in this column does not take into
consideration InspectionTime. The sixth column (SIMACE sigma A4) represents the
standard deviation of the mean 4, in the previous column. The seventh column (SIMACE
mu FMC) represents the mean 4 obtained from 100 repetitions of SIMACE including
InspectionTime in the calculation of 4,. The eighth column (FMC sigma 4,) represents
the standard deviation of the mean A4 in the previous column.

The last two columns of data in each table are provided to the reader but were not
commented on in this thesis. These columns pertain to the calculation of a FMC rate as
follows. It could be the case that during a sortie a WRA fails thereby making the Aircraft

not FMC, but possibly MC. The last two columns take this into consideration meaning

that the time not FMC and flying is not included in the calculation of 4,. These columns

are labeled as “SIMACE mu otFMC” and “SIMACE sigma otFMC” which pertain to the
mean and standard deviation of the FMC rate obtained from 100 repetitions of SIMACE.

53

4 Aircraft

0.0 hr TransitTime, 8.0 hr PatrolTime, 0.0 hr InspectTime
Variable MTTF, Constant MTTR, Constant OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0775 0.0086 0.0775 0.0086 0.0510] 0.0086
0.04 365632 0.37 0.0440 0.1276 0.0177 0.1276 0.0177 0.0847] 0.0163
0.08 648441 0.65 0.0820 0.1562 0.0222 0.1562 0.0222 0.1061] 0.0200
0.12] 1033257 1.03 0.1260 0.2071 0.0286 0.2071 0.0286 0.1465] 0.0267
0.16] 1349097 1.35 0.1720 0.2344 0.0337 0.2344 0.0337 0.1677] 0.0312
0.20] 1670262 1.67 0.2190 0.2728 0.0349 0.2728 0.0349 0.1990] 0.0329
0.24] 1832271 1.83 0.2450 0.2815 0.0418 0.2815 0.0418 0.2056] 0.0384
0.28] 2094848 2.09 0.2830 0.3001 0.0411 0.3001 0.0411 0.2213] 0.0382
0.32] 2341690 2.34 0.3200 0.3313 0.0443 0.3313 0.0443 0.2488] 0.0412
0.36] 2826879 2.83 0.3850 0.3881 0.0489 0.3881 0.0489 0.2967] 0.0464
0.40] 2968401 2.97 0.4050 0.4063 0.0503 0.4063 0.0503 0.3132] 0.0480
0.44] 3390074 3.39 0.4540 0.4406 0.0573 0.4406 0.0573 0.3434] 0.0548
0.48] 3636777 3.64 0.4810 0.4577 0.0561 0.4577 0.0561 0.3590] 0.0532
0.52] 4001668 4.00 0.5200 0.4943 0.0599 0.4943 0.0599 0.3926] 0.0575
0.56] 4487259 4.49 0.5650 0.5440 0.0553 0.5440 0.0553 0.4395] 0.0528
0.60] 4941794 4.94 0.6020 0.5773 0.0576 0.5773 0.0576 0.4701] 0.0561
0.64] 5668848 5.67 0.6570 0.6343 0.0581 0.6343 0.0581 0.5241] 0.0586
0.68] 6148511 6.15 0.6890 0.6665 0.0456 0.6665 0.0456 0.5559] 0.0465
0.72] 6840474 6.84 0.7250 0.7031 0.0487 0.7031 0.0487 0.5918] 0.0486
0.76] 7739007 7.74 0.7600 0.7404 0.0421 0.7404 0.0421 0.6283] 0.0426
0.80] 9257914 9.26 0.8000 0.7841 0.0346 0.7841 0.0346 0.6716] 0.0354
0.84] 12835873 12.84 0.8400 0.8246 0.0183 0.8246 0.0183 0.7106] 0.0205
0.88] 25599156 25.60 0.8530 0.8351 0.0161 0.8351 0.0161 0.7218] 0.0193
Approximate
Max Ao >> | >25599156] > 25.60] 0.8530] 0.8421] 0.0080] 0.8421] 0.0080] 0.7280] 0.0132]
Table 1 Case Y (Constant) Output

54

4 Aircraft

0.0 hr TransitTime, 8.0 hr PatrolTime, 0.0 hr InspectTime
Variable MTTF, Variable MTTR, Variable OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0619 0.0091 0.0619 0.0091 0.0396 0.0076
0.04 365632 0.37 0.0440 0.1230 0.0231 0.1230 0.0231 0.0822 0.0189
0.08 648441 0.65 0.0820 0.1528 0.0284 0.1528 0.0284 0.1036 0.0237
0.12 1033257 1.03 0.1260 0.2040 0.0346 0.2040 0.0346 0.1433 0.0304
0.16 1349097 1.35 0.1720 0.2286 0.0463 0.2286 0.0463 0.1624 0.0385
0.20 1670262 1.67 0.2190 0.2710 0.0467 0.2710 0.0467 0.1976 0.0415
0.24 1832271 1.83 0.2450 0.2901 0.0636 0.2901 0.0636 0.2141 0.0556
0.26 2037066 2.04 0.2750 0.3009 0.0579 0.3009 0.0579 0.2230 0.0508
0.28 2094848 2.09 0.2830 0.3075 0.0575 0.3075 0.0575 0.2273 0.0502
0.32 2341690 2.34 0.3200 0.3360 0.0578 0.3360 0.0578 0.2537 0.0528
0.36 2826879 2.83 0.3850 0.4055 0.0681 0.4055 0.0681 0.3143 0.0573
0.40 2968401 2.97 0.4050 0.4131 0.0729 0.4131 0.0729 0.3198 0.0673
0.44 3390074 3.39 0.4540 0.4524 0.0797 0.4524 0.0797 0.3547 0.0754
0.48 3636777 3.64 0.4810 0.4657 0.0678 0.4657 0.0678 0.3665 0.0639
0.52 4001668 4.00 0.5200 0.5037 0.0856 0.5037 0.0856 0.4042 0.0808
0.56 4487259 4.49 0.5650 0.5516 0.0718 0.5516 0.0718 0.4477 0.0687
0.60 4941794 4.94 0.6020 0.5777 0.0769 0.5777 0.0769 0.4716 0.0731
0.64 5668848 5.67 0.6570 0.6437 0.0672 0.6437 0.0672 0.5336 0.0663
0.68 6148511 6.15 0.6890 0.6758 0.0742 0.6758 0.0742 0.5677 0.0730
0.72 6840474 6.84 0.7250 0.7088 0.0629 0.7088 0.0629 0.5975 0.0631
0.76 7739007 7.74 0.7600 0.7367 0.0651 0.7367 0.0651 0.6248 0.0640
0.80 9257914 9.26 0.8000 0.7805 0.0428 0.7805 0.0428 0.6671 0.0433
0.84] 12835873 12.84 0.8400 0.8261 0.0283 0.8261 0.0283 0.7124 0.0302
0.88] 25599156 25.60 0.8530 0.8397 0.0170 0.8397 0.0170 0.7262 0.0197
Approximate
Max Ao >> [>25599156] > 25.60] 0.8530] 0.8454] 0.0128] 0.8454] 0.0128] 0.7316] 0.0161]
Table2 Case Y (Variable) Output

55

4 Aircraft

2.0 hr TransitTime, 8.0 hr PatrolTime, 2.0 hr InspectTime
Variable MTTF, Constant MTTR, Constant OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC

0.00 0 0.00 0.0000 0.0858 0.0041 0.0978 0.0044 0.0567 0.0058

0.04] 1112889 1.11 0.0430 0.1759 0.0176 0.2002 0.0196 0.1165 0.0152

0.08] 1699006 1.70 0.0810 0.2094 0.0216 0.2382 0.0239 0.1405 0.0183

0.12] 2195323 2.20 0.1220 0.2324 0.0254 0.2638 0.0279 0.1549 0.0219

0.16] 2694876 2.69 0.1710 0.2695 0.0284 0.3049 0.0313 0.1830 0.0235

0.20] 3249008 3.25 0.2230 0.3082 0.0307 0.3475 0.0335 0.2123 0.0271

0.24] 3444643 3.44 0.2430 0.3167 0.0319 0.3569 0.0348 0.2173 0.0280

0.28] 3790885 3.79 0.2820 0.3364 0.0338 0.3785 0.0364 0.2325 0.0293

0.32] 4171304 4.17 0.3210 0.3530 0.0383 0.3966 0.0414 0.2470 0.0333

0.36] 4586503 4.59 0.3640 0.3844 0.0361 0.4305 0.0388 0.2707 0.0327

0.40] 5199441 5.20 0.4190 0.4119 0.0413 0.4602 0.0440 0.2942 0.0374

0.44] 5546911 5.55 0.4510 0.4380 0.0335 0.4881 0.0358 0.3149 0.0305

0.48] 6158758 6.16 0.5030 0.4758 0.0356 0.5285 0.0375 0.3468 0.0331

0.52] 6399776 6.40 0.5230 0.4878 0.0437 0.5413 0.0462 0.3570 0.0416

0.56] 6974610 6.97 0.5650 0.5155 0.0424 0.5706 0.0444 0.3814 0.0399

0.60] 7537554 7.54 0.6020 0.5395 0.0399 0.5958 0.0417 0.4025 0.0383

0.64] 8444231 8.44 0.6440 0.5686 0.0440 0.6263 0.0457 0.4263 0.0413

0.68] 9767942 9.77 0.6920 0.6145 0.0312 0.6740 0.0322 0.4691 0.0309

0.72] 10700589 10.70 0.7200 0.6400 0.0288 0.7005 0.0296 0.4923 0.0293

0.76] 13304881 13.30 0.7600 0.6767 0.0239 0.7382 0.0244 0.5263 0.0264

0.80] 21770298 21.77 0.7870 0.6947 0.0181 0.7565 0.0184 0.5438 0.0221

Approximate
Max Ao >> [> 21770298] > 21.77] 0.7870] 0.7045] 0.0107] 0.7665] 0.0107] 0.5527] 0.0169]
Table 3 Case Z (Constant) Output

56

4 Aircraft

2.0 hr TransitTime, 8.0 hr PatrolTime, 2.0 hr InspectTime
Variable MTTF, Variable MTTR, Variable OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0640 0.0084 0.0733 0.0096 0.0413 0.0069
0.04] 1112889 1.11 0.0430 0.1644 0.0251 0.1876 0.0282 0.1072 0.0195
0.08] 1699006 1.70 0.0810 0.2019 0.0293 0.2298 0.0328 0.1340 0.0227
0.12] 2195323 2.20 0.1220 0.2337 0.0373 0.2652 0.0415 0.1570 0.0297
0.16] 2694876 2.69 0.1710 0.2649 0.0394 0.2998 0.0433 0.1794 0.0314
0.20] 3249008 3.25 0.2230 0.3114 0.0426 0.3508 0.0466 0.2144 0.0348
0.24] 3444643 3.44 0.2430 0.3174 0.0403 0.3572 0.0439 0.2201 0.0340
0.28] 3790885 3.79 0.2820 0.3388 0.0456 0.3806 0.0493 0.2362 0.0390
0.32] 4171304 4.17 0.3210 0.3560 0.0453 0.3997 0.0490 0.2493 0.0387
0.36] 4586503 4.59 0.3640 0.3914 0.0491 0.4375 0.0528 0.2791 0.0423
0.40] 5199441 5.20 0.4190 0.4330 0.0527 0.4825 0.0561 0.3117 0.0468
0.44] 5546911 5.55 0.4510 0.4507 0.0552 0.5013 0.0587 0.3258 0.0489
0.48] 6158758 6.16 0.5030 0.4817 0.0523 0.5352 0.0553 0.3538 0.0473
0.52] 6399776 6.40 0.5230 0.5008 0.0491 0.5546 0.0518 0.3689 0.0445
0.56] 6974610 6.97 0.5650 0.5247 0.0527 0.5797 0.0551 0.3902 0.0488
0.60] 7537554 7.54 0.6020 0.5535 0.0597 0.6099 0.0625 0.4162 0.0544
0.64] 8444231 8.44 0.6440 0.5817 0.0509 0.6393 0.0530 0.4400 0.0480
0.68] 9767942 9.77 0.6920 0.6221 0.0443 0.6816 0.0457 0.4765 0.0428
0.72] 10700589 10.70 0.7200 0.6443 0.0416 0.7044 0.0428 0.4965 0.0420
0.76] 13304881 13.30 0.7600 0.6775 0.0288 0.7385 0.0292 0.5279 0.0300
0.80] 21770298 21.77 0.7870 0.6963 0.0275 0.7578 0.0280 0.5460 0.0296
Approximate
Max Ao >> [> 21770298] > 21.77] 0.7870] 0.7064] 0.0151] 0.7680] 0.0153] 0.5564] 0.0199]
Table4 Case Z (Variable) Output (Same as Base Case)

57

5 Aircraft

2.0 hr TransitTime, 8.0 hr PatrolTime, 2.0 hr InspectTime
Variable MTTF, Variable MTTR, Variable OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0673 0.0071 0.0767 0.0081 0.0443 0.0064
0.04 639182 0.64 0.0410 0.1326 0.0166 0.1507 0.0186 0.0891 0.0133
0.08 1256803 1.26 0.0860 0.1887 0.0252 0.2131 0.0278 0.1288 0.0204
0.12 1699006 1.70 0.1300 0.2079 0.0309 0.2341 0.0337 0.1439 0.0255
0.16 2083412 2.08 0.1700 0.2415 0.0354 0.2711 0.0383 0.1687 0.0298
0.20 2371048 2.37 0.2020 0.2525 0.0360 0.2833 0.0389 0.1779 0.0304
0.24 2694876 2.69 0.2410 0.2797 0.0370 0.3126 0.0398 0.1982 0.0317
0.28 3249008 3.25 0.2990 0.3283 0.0416 0.3647 0.0443 0.2388 0.0369
0.32 3444643 3.44 0.3210 0.3504 0.0446 0.3881 0.0472 0.2582 0.0404
0.36 3790885 3.79 0.3620 0.3580 0.0436 0.3968 0.0460 0.2638 0.0389
0.40 4149673 4.15 0.4000 0.3863 0.0500 0.4264 0.0526 0.2880 0.0452
0.44 4586503 4.59 0.4440 0.4243 0.0562 0.4663 0.0587 0.3215 0.0516
0.48 5199441 5.20 0.4970 0.4606 0.0610 0.5042 0.0634 0.3527 0.0568
0.52 5546911 5.55 0.5280 0.4859 0.0570 0.5307 0.0588 0.3770 0.0556
0.56 6158758 6.16 0.5760 0.5363 0.0591 0.5827 0.0607 0.4227 0.0565
0.60 6490552 6.49 0.6020 0.5569 0.0603 0.6038 0.0618 0.4418 0.0579
0.64 7071551 7.07 0.6400 0.5833 0.0608 0.6311 0.0622 0.4660 0.0586
0.68 8169614 8.17 0.6920 0.6333 0.0581 0.6818 0.0581 0.5144 0.0560
0.72 9071782 9.07 0.7240 0.6540 0.0516 0.7029 0.0523 0.5343 0.0517
0.76] 10046927 10.05 0.7620 0.6981 0.0360 0.7476 0.0362 0.5764 0.0369
0.80] 13041712 13.04 0.8000 0.7322 0.0324 0.7819 0.0326 0.6113 0.0327
0.84| 23499064 23.50 0.8260 0.7564 0.0193 0.8062 0.1940 0.6355 0.0205
0.88] 23499064 23.50 0.8260 0.7564 0.0193 0.8062 0.0194 0.6355 0.0205
Approximate
Max Ao >> | > 23499064 > 23.50] 0.8260] 0.7625] 0.0018| 0.8123] 0.0018] 0.6391] 0.0157|
Table 5 Case A Output

58

4 Aircraft, 25% better MTBF, 50% increased cost
2.0 hr TransitTime, 8.0 hr PatrolTime, 2.0 hr InspectTime

Variable MTTF, Variable MTTR, Variable OST

reps = 100
ARROWs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget ($) Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0712 0.0103 0.0816 0.0118 0.0491 0.0092
0.04 868710 0.87 0.0400 0.1469 0.0242 0.1678 0.0273 0.1036 0.0206
0.08 1704521 1.70 0.0830 0.2108 0.0329 0.2395 0.0366 0.1513 0.0275
0.12 2258717 2.26 0.1240 0.2310 0.0337 0.2620 0.0373 0.1671 0.0289
0.16 2863505 2.86 0.1730 0.2627 0.0410 0.2972 0.0450 0.1917 0.0342
0.20 3192363 3.19 0.2010 0.2841 0.0392 0.3207 0.0430 0.2085 0.0340
0.24 3670561 3.67 0.2420 0.3147 0.0526 0.3542 0.0568 0.2343 0.0462
0.28 4634712 4.63 0.3190 0.3684 0.0531 0.4125 0.0572 0.2768 0.0474
0.32 4697514 4.70 0.3250 0.3574 0.0544 0.4009 0.0585 0.2680 0.0479
0.36 5198752 5.20 0.3670 0.3926 0.0604 0.4385 0.0648 0.2990 0.0537
0.40 5702889 5.70 0.4040 0.4189 0.0590 0.4669 0.0632 0.3212 0.0524
0.4 6394231 6.39 0.4530 0.4419 0.0648 0.4915 0.0690 0.3403 0.0584
0.48 6787275 6.79 0.4810 0.4589 0.0623 0.5099 0.0659 0.3547 0.0588
0.52 7446194 7.45 0.5210 0.4980 0.0577 0.5509 0.0608 0.3901 0.0552
0.56 8556676 8.56 0.5830 0.5457 0.0560 0.6014 0.0587 0.4313 0.0526
0.60 9019317 9.02 0.6050 0.5500 0.0633 0.6057 0.0662 0.4350 0.0598
0.64 9941782 9.94 0.6470 0.5930 0.0551 0.6507 0.0575 0.4748 0.0522
0.68 10771041 10.77 0.6810 0.6144 0.0623 0.6728 0.0646 0.4936 0.0599
0.72 12659163 12.66 0.7280 0.6515 0.0464 0.7114 0.0478 0.5284 0.0455
0.76 14346116 14.35 0.7620 0.6915 0.0373 0.7523 0.0382 0.5671 0.0369
0.80 17831276 17.83 0.8010 0.7220 0.0290 0.7835 0.0295 0.5956 0.0315
0.82 23393858 23.39 0.8210 0.7434 0.0203 0.8052 0.0205 0.6158 0.0231
Approximate
MaxAo>> | >23393858] > 23.39] 0.8250] 0.7520] 0.0125] 0.8140] 0.0125] 0.6252] 0.0167]
Table 6 Case B Output

59

4 Aircraft

2.0 hr TransitTime, 8.0 hr PatrolTime, 2.0 hr InspectTime
Variable MTTF (Weibull), Variable MTTR, Variable OST

reps = 100
ARROWSs | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE | SIMACE
Spares Spares mu sigma mu sigma mu sigma
Goal Ao Budget Budget ($M) Ao Ao Ao FMC FMC otFMC otFMC
0.00 0 0.00 0.0000 0.0837 0.0102 0.0957 0.0116 0.0629 0.0097
0.04] 1112889 1.11 0.0430 0.2191 0.0337 0.2484 0.0372 0.1615 0.0286
0.08] 1699006 1.70 0.0810 0.2740 0.0376 0.3089 0.0411 0.2043 0.0316
0.12] 2195323 2.20 0.1220 0.3210 0.0431 0.3604 0.0467 0.2404 0.0378
0.16] 2694876 2.69 0.1710 0.3489 0.0475 0.3909 0.0514 0.2625 0.0410
0.20] 3249008 3.25 0.2230 0.4090 0.0597 0.4554 0.0637 0.3134 0.0537
0.24] 3444643 3.44 0.2430 0.4216 0.0488 0.4693 0.0520 0.3229 0.0437
0.28] 3790885 3.79 0.2820 0.4392 0.0571 0.4880 0.0607 0.3375 0.0506
0.32] 4171304 4.17 0.3210 0.4654 0.0518 0.5162 0.0547 0.3607 0.0466
0.36] 4586503 4.59 0.3640 0.4964 0.0561 0.5487 0.0592 0.3867 0.0513
0.40] 5199441 5.20 0.4190 0.5278 0.0637 0.5820 0.0667 0.4138 0.0591
0.44] 5546911 5.55 0.4510 0.5484 0.0566 0.6036 0.0592 0.4323 0.0520
0.48] 6158758 6.16 0.5030 0.5880 0.0591 0.6452 0.0617 0.4676 0.0548
0.52] 6399776 6.40 0.5230 0.5973 0.0594 0.6549 0.0617 0.4758 0.0568
0.56] 6974610 6.97 0.5650 0.6282 0.0560 0.6871 0.0579 0.5034 0.0546
0.60] 7537554 7.54 0.6020 0.6448 0.0524 0.7042 0.0541 0.5194 0.0516
0.64] 8444231 8.44 0.6440 0.6675 0.0437 0.7278 0.0448 0.5394 0.0430
0.68] 9767942 9.77 0.6920 0.7049 0.0360 0.7661 0.0369 0.5751 0.0367
0.72] 10700589 10.70 0.7200 0.7211 0.0247 0.7826 0.0251 0.5913 0.0269
0.76] 13304881 13.30 0.7600 0.7312 0.0218 0.7928 0.0222 0.6002 0.0255
0.80] 21770298 21.77 0.7870 0.7453 0.0133 0.8072 0.0134 0.6138 0.0177
Approximate
Max Ao >> [> 21770298] >21.77] 0.7870] 0.7459] 0.0120] 0.8079] 0.0121] 0.6146] 0.0167]
Table 7 Application of the Weibull Distribution to MTTF

60

APPENDIX D. SIMACE JAVA CODE

The purpose of this appendix is to display the Java code used to develop
SIMACE. The Java code begins on the next page.

61

package ace;

/

* 0%k kX X F F

~

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<pP>

Comments: Main class for SINMACE.

i mport sinkit.*;

i mport sinkit.random *;
import sinkit.util.*;
i mport sinkit.stat.*;
i mport sinkit.xm.*;

i mport java.util.?*;
i mport java.text.?*;
i mport java.io.*;

i mport java.net.*;

i mport javax.sw ng.*;
i mport javax.sw ng.fil echooser. *;

i mport org.jdom*;
i mport org.jdom i nput. SAXBui |l der;

public class ACE main {

/! basic information

private static int numAircraft;

private static double transitTine;
private static double patrol Ti ne;
private static doubl e inspectionTing;
private static doubl e depl oynent Lengt h;

// information for each WRA

private static String |abel;
private static String nonencl at ure;
private static double unitPrice;
private static int gtyPerAircraft;
private static int qgtySpare;

private static String ttfDistribution;
private static double ttfValue;
private static int ttfSeed;

private static String ttrDistribution;
private static double ttrVal ue;
private static int ttrSeed,

private static String ostDistribution;
private static doubl e ostVal ue;
private static int ostSeed,;

62

private static RandonVariate ttfRV,
private static RandonVariate ttrRV,
private static RandonVari ate ostRV,

/1 the containers

private stati
private stati

c Aircraft[] squadron;
¢ HashMap wraMap new HashMap() ;
private static HashMap ttfMap new HashMap() ;
private static HashMap ttrMap new HashMap() ;
private static HashMap ost Map new HashMap() ;
c
c
c

private static HashMap acAl |l owanceMap = new HashMap();
private static HashMap spareAl | owanceMap = new HashMap();
private static WRAl nventory sparelnv = new WRAI nventory();

/1 the ATO obj ect

private static ATO ato;

/1 formatting variables

private static Decimal Format fm = new Deci mal For mat (" 0. 0000");

/1 dunper, for observing the property changes on the event i st

private static SinplePropertybDunper dunper = new Sinpl ePropertyDunper();
/] statistical variables

private static SinpleStatsTi neVarying ot St at

= new Si npl eSt at sTi meVaryi ng("operational");
private static SinpleStatsTi neVarying ot FMCSt at

= new Si npl eSt at sTi meVaryi ng("operati onal FMC") ;
private static SinpleStatsTi neVarying st St at

= new Si npl eSt at sTi neVaryi ng("standBy");
private static SinpleStatsTi neVarying fncStat

= new Si npl eSt at sTi meVaryi ng("fnc");
private static SinpleStatsTi neVarying inspect St at

= new Si npl eSt at sTi meVaryi ng("i nspecting");

private static SinpleStatsTally aoTally
= new SinpleStatsTal l y();

private static SinpleStatsTally fncTally
= new Sinpl eStatsTal ly();

private static SinpleStatsTally inFlightFailureFMCTal ly
= new SinpleStatsTal | y();

private static File outFile;
private static File outFileCSV,

protected static RandomNumber ttfRNG
protected static RandomNumber ttrRNG
protected stati c RandomNurmber ost RNG

// main nethod

63

public static void main(String args[]) throws | OException {

*

/
Time to Failure

There is a 1-1 correspondance between each individual WRA and ttf.
Each WRA has its own ttf RandonVariate. The TTF Random Vari ates
are stored in a HashMap. Wen instantiating a WRA, the appropriate
ttf RandonVariate is accessed fromthis HashMap. The HashMap is
ref erenced when individual Aircraft are instantiated. This HashMap
wi Il NOT be sent to the ATO cl ass.

Time to Repair

There is NOT a 1-1 correspondance between individual, independent
WRAs and Tine to Repair (ttr). Rather a relationship exists
between all WRAs of a particular type (label) and the ttr. For
exanmple, all WRAs with a | abel of "000123456" have the sane

ttr RandonVari ate whereas each | NDI VI DUAL "000123456" has its
own ttf RandonVariate. The TTR RandonVariates are stored in a
HashMap. This HashMap will be sent to the ATO cl ass.

Ordering and Shi pping Tine

There is NOT a 1-1 correspondance between individual, independent
WRAs and Ordering and Shipping Time (ost). Rather a relationship
exi sts between all WRAs of a particular type (label) and the ost
RandonVari ate. For exanple all WRAs with a I abel of "000123456"
have the sane ost distribution whereas each | NDI VI DUAL "000123456"
has its own ttf RandonVariate. The OST Random Vari ates are stored
in a HashMap. This HashMap will be sent to the ATO cl ass.

The Squadron of Aircraft

A squadron of Aircraft consists of a certain quantity of Aircraft.
Aircraft are referenced by their tail nunmber. The tail nunbers

are always strings of two digits. For exanple "00", "07", and "11".
The squadron of Aircraft is an Array of type Aircraft. The
squadron Array is sent to the ATO cl ass.

WWRAS

The nunber of each type WRA that belong in each Aircraft object is
an input parameter. Each Aircraft has a certain nunber of each
type WRA installed on it. The possibility exists that an Aircraft
can have nultiple instances of the sane type WRA. For exanple, an
Aircraft can have nore than one WRA with a | abel of "000123456"
WRAs are al ways referenced referenced by their |abel which nust

be uni que for each type WRA

The Spares Kit

The al | owance for each WRA that nakes up the spares kit is an
i nput paraneter. The spares kit is stored as a WRAl nventory.
The spares kit WRAlnventory is sent to the ATO cl ass.

LS I S I T N R B S B . R R R R B B I R R T T T B B B

*
~

/1 Select output file for data archiving (collects data for EACH run)

URL url = ACE nmi n. cl ass. get Resource("ACE_nai n. cl ass");

File outDirectory = new File(url.getFile()).getParentFile();
JFi | eChooser out Chooser = new JFil eChooser (outDirectory);

i nt outResult = out Chooser.showhDi al og(null, "Save");

64

if(outResult != JFil eChooser. APPROVE OPTION) {

Systemerr.println("

System exit(0);

No save file chosen.");

out Fil e = out Chooser. get Sel ectedFil e();

/1 Select output file for entry into a spreadsheet

URL url CSV = ACE_mai n. cl ass. get Resour ce(" ACE_mai n. cl ass");

File outDirectoryCSV = new File(url CSV.getFile()).getParentFile();

JFi | eChooser out Chooser CSV = new JFi | eChooser (out Di rect oryCsV) ;

i nt out Resul t CSV = out Chooser CSV. showDi al og(nul I,

i f(outResultCSV !'= JFi

Systemerr.println("

| eChooser . APPROVE_COPTI ON) {
No save file chosen.");

}

public static void processOneScenario(File inputFile) throws | OException {

System exit(0);
}

out Fi | eCSV = out Chooser CSV. get Sel ectedFil e();

/1 Select input files

JFi | eChooser i nChooser

= new JFi | eChooser (ACE_nai n. cl ass. get Resour ce("ACE mai n. cl ass")

.getFile());

int inResult = inChooser. showDi al og(new JFrane(),
i f(inResult !'= JFil eChooser. APPROVE OPTI ON) {

"Save");

"Open");

Systemerr.printin("No input file selected...exiting.");

System exi t (0);
}
File inFile = inChooser. get Sel ectedFil e();
File inDirectory = inFile.getParentFile();
File[] files = inDirectory.listFiles();

for(int i =0; i <files.length; ++i) {
processOneScenario(files[i]);
Schedul e. cl ear Rerun();
reset Scenari o();

}

Systemout.println("SIMACE conpleted its processing.

Pl ease see the output file.");
System exit(0);

doubl e next Ao;
doubl e next FMC;
doubl e next | nFli ght Fai | ur eFMC,

String string = ;

Fi | eQut put Stream out = new Fil eQut put StreamoutFil e,

Fi | eCut put Stream out CSV = new Fi |l eQut put Stream(out Fi | eCSV, true);

Strlng = "\n**"-
out.wite(string.getBytes());

string = "\nProcessing: " + inputFile;

out.wite(string.getBytes());

String = "\n**"-

out.wite(string.getBytes());
try {
65

true);

processXM.Fil es(i nputFile);

}
catch (Fil eNot FoundException e) {

System out. println("Fil eNot FoundException");
}

cr eat eSquadron();
passPar aneters();
addLi steners();

string = "\n\nFormat: nextAo, nextFMC, nextlnFlightFail ureFMC
out.wite(string.getBytes());

for(int i =0; i < 100; ++i) {
Schedul e. reset () ;
reset Ti meVaryi ngSt at s();
popul ateAircraft();
popul at eSparesKit();
runSi nul ation();

next Ao = cal cul at eAo();

aoTal | y. newCbservation(nextAo);
string = "\n" + nextAo + ",";
out.wite(string.getBytes());

next FMC = cal cul at eFMZX() ;

fncTal | y. newQbservati on(next FMC);
string = "" + nextFMC + ", ";
out.wite(string.getBytes());

next I nFl i ght Fai | ureFMC = cal cul at el nFl i ght Fai | ur eFMC() ;

i nFlightFailureFMCTal | y. newbhservation(nextlnFlightFailureFMC);
string = "" + nextlnFlightFail ureFM
out.wite(string.getBytes());

}

string = "\'n\naoTal | y. get Count ()=" + aoTally. getCount();
out.wite(string.getBytes());
string = "\naoTal |l y. get Mean()=" + fnt.format(aoTally.get Mean())
out.wite(string.getBytes());
string = "," + aoTally.get Mean();
out CSV.write(string.getBytes());
string = "\ naoTal |l y. get St andar dDevi ati on() ="

+ fm.format (aoTal |l y. get St andar dDevi ation());
out.wite(string.getBytes());

string = "," + aoTally. get StandardDevi ati on();
out CSV.write(string.getBytes());

string = "\n\nfncTally. get Count ()=" + fntTally. getCount();
out.wite(string.getBytes());
string = "\nfncTally. getMean()=" + fnt.format(fncTally.getMean());
out.wite(string.getBytes());
string = "," + fntTally. get Mean();
out CSV. write(string. getBytes());
string = "\nfncTal |l y. get St andar dDevi ati on() ="

+ fm.format (fncTal ly. get StandardDevi ation());
out.wite(string.getBytes());
string = "," + fntTally. get St andar dDevi ati on();

66

out CSV.write(string.getBytes());

string = "\'n\ninFlightFailureFMCTal | y. get Count ()=" +
i nFl i ght Fai | ureFMCTal | y. get Count () ;
out.wite(string.getBytes());
string = "\ninFlightFailureFMCTal | y. get Mean() =" +
fnt.format (i nFlightFailureFMCTal ly. get Mean());
out.wite(string.getBytes());
string = "," + inFlightFailureFMCTal ly. get Mean();
out CSV.write(string.getBytes());
string = "\ninFlightFailureFMCTal | y. get St andar dDevi ation()=" +
fnt.format (i nFlightFailureFMCTal |l y. get St andar dDevi ati on()
out.wite(string.getBytes());
string = "," + inFlightFailureFMCTal | y. get St andar dDevi ati on();
out CSV.write(string.getBytes());

string = "\n\n";
out.wite(string.getBytes());
out. cl ose();

out CSV. cl ose();

}

/**
* Calculates and returns the Ao for a sinmulation run.
**/

public static double cal cul ateAo() {
return (otStat.getMean() + stStat.getMean())/nunAircraft;
}

/**
* Calculates and returns the FMC rate for a sinulation run.
**/
public static double cal cul ateFMZ() {
return (otStat.get Mean() + stStat.getMean() +
i nspect St at. get Mean())/ numAi rcraft;

}

/**
* Calculates the FMC rate, not including the tinme operational
*with a NRFI WRA. It could be the case that one or nore
* WRAs fail in flight. |If this is the case, this nethod
* calculates the FMC rate NOT including the operational tine
*

after the first WRA failure.

**/

public static double cal cul atel nFlightFailureFMZ() {
return (ot FMCSt at. get Mean() + stStat.getMean() +
i nspect Stat. getMean())/numiircraft;

}
/**

* Creates a squadron of Aircraft. The Aircraft are popul ated
* with WRAs in the nethod popul ateAircraft().
**/
public static void createSquadron() {
String tail Number;
for(int i =0; i < squadron.length; ++i) {
if(i <10) {

67

t ai | Nunmber

"0" + String,VaI ued(l)l

}
el se {
tail Nunber = String.valueO(i);
squadron[i] = new Aircraft(tail Nunmber);
}

}
/**
* Popul ate each aircraft with the proper allowance of each type WRA
**/

public static void popul ateAircraft() {

String | abel;

Set | abels = acAl | owanceMap. keySet () ;

WRA wr a;

int allowance = 0;

for(lterator iter = labels.iterator(); iter.hasNext();) {

| abel = (String)iter.next();
al l owance = ((I nteger)acAl |l owanceMap. get (Il abel)).intValue();
wra = new WRA((WRA) wr aMap. get (| abel));

for(int i = 0; i < squadron.length; ++i) {
squadron[i].addWRA(wra, allowance);
}
}
}
/**
* Popul ate the spares kit with the proper allowance of each type WRA
**/

public static void popul ateSparesKit() {

}

/**

* Pass the paraneters to the appropriate cl asses.

**/

String | abel;

Set | abel s = spareAl | owanceMap. keySet () ;

WRA wr a;

int allowance = 0;

for(lterator iter = |labels.iterator(); iter.hasNext();) {

| abel = (String)iter.next();
al l owance = ((I nteger)spareAll owanceMap. get (1 abel)).intVal ue();
wa = new WRA((WRA) w aMap. get (| abel));
spar el nv. addCopi es(wra, all owance);

public static void passParaneters() {

oj ect[] paranms = new Cbject[8];

params[0] = squadron;

paranms[1] = sparelnv;

parans[2] = w aMap;

paranms[3] = ttrMap;

paranms[4] = ost Map;

paranms[5] = new Doubl e(transitTinme);
parans[6] = new Doubl e(patrol Ti ne);
parans[7] = new Doubl e(i nspectionTi ne);

68

ato = new ATQ(par ans);

}

/**

* Add |isteners.

**/

public static void addListeners() {
/1 1f desired, dunpers may listen for convience.

/1l for(int i =0; i < squadron.length; i++) {

/1 squadron[i].addPropertyChangelLi stener(dunper);
/1 }

/1 ato.addPropertyChangelLi st ener(dunper);

for(int i =0; i < squadron.length; ++i) {
squadron[i].addSi nEvent Li stener(ato);
}

/] ato.addPropertyChangelLi stener(dunper);

at 0. addPr opertyChangelLi stener(otStat);

at 0. addPr opert yChangeli st ener (ot FMCSt at) ;
at 0. addPr opert yChangelLi stener(stStat);

at 0. addPr opertyChangeli stener(fncStat);

at 0. addPr opert yChangelLi stener(inspectStat);

}

/**

* Run the sinulation.
**/
public static void runSinulation() {
Schedul e. st opAt Ti ne(depl oynent Length);
Schedul e. set Ver bose(fal se);
Schedul e. set Si ngl eStep(fal se);
Schedul e. start Si mul ation();

}

public static void processXM.Files(File inputFile) throws
Fi | eNot FoundExcepti on, | OException {

SAXBui | der bui | der;

Docurment doc = nul | ;

Fil eQut put Stream out = new Fil eQutput Stream(outFile, true);

Fi | eCut put Stream out CSV = new Fi |l eQut put Stream(out Fi | eCSV, true);

String string = "";
try {
bui | der = new SAXBui | der ();
doc = builder.build(inputFile);

}

catch (JDOVException e) {}

catch (Exception e) {}

El ement root = doc. get Root El enent () ;

if(root.getChild("NumAircraft") !'=null) {

string = "\n" + root.getChild("AvailabilityGoal").getText();
69

out CSV.write(string.getBytes());

string = "," + root.getChild("SparesCost").getText();
out CSV.write(string. getBytes());
string = "," +

root.get Chil d(" SparesEsti mat edAvail ability"). get Text();
out CSV.write(string.getBytes());

El ement nunAircraft El ement = root.getChild("NumAircraft");

numAi rcraft = I nteger.parselnt(numAircraftEl ement. get Text());
squadron = new Aircraft[nunAircraft];
string = "\nnunAircraft =" + nunAircraft;

out.wite(string.getBytes());

El ement transitTi meEl ement = root.getChild("TransitTime");
transit Ti me = Doubl e. parseDoubl e(transitTi neEl enent. get Text());
string = "\ntransitTime =" + fnmt.format(transitTi nme);
out.wite(string.getBytes());

El ement patrol Ti meEl enent = root.get Child("Patrol Ti me");
patrol Ti me = Doubl e. par seDoubl e(patrol Ti neEl ement . get Text ());
string = "\npatrolTime =" + fnt.fornmat (patrol Ti ne);
out.wite(string.getBytes());

El ement inspectionTi neEl ement = root.getChild("InspectionTinme");
i nspectionTi me = Doubl e. par seDoubl e(i nspecti onTi neEl enent .

get Text ());
string = "\ninspectionTine =" + fm.format (i nspectionTine);
out.wite(string.getBytes());

El enent depl oynent Lengt hEl enent = root. get Chi | d(" Depl oynent Lengt h") ;

depl oynment Lengt h = Doubl e. par seDoubl e(depl oynment Lengt hEl enrent
.getText ());

string = "\ ndepl oynentLength = " + fnt.format(depl oynment Length);

out.wite(string.getBytes());

El ement avail abilityGoal El enent = root.getChil d("AvailabilityGoal");
string = "\n\nAvailabilityGoal =" +
avai |l abi |'i tyGoal El enment . get Text () ;

out.wite(string.getBytes());

El ement spar esCost El enent = root. get Chil d("SparesCost");

string = "\ nSparesCost = + spar esCost El enent . get Text () ;
out.wite(string.getBytes());

El enent sparesEsti mat edAvail abilityEl ement
= root.get Chil d("SparesEsti mat edAvail ability");
string = "\ nSparesEsti matedAvai lability =" +
spar esEsti mat edAvai | abi | ityEl enent. get Text () ;
out.wite(string.getBytes());

ttfRNG = createTTFRNG root. get Chil d("MITFSeed"));
ttrRNG = creat eTTRRNG root. get Chil d("MITRSeed"))
0Sst RNG = creat eOSTRNG root. get Chil d("OSTSeed"));

El ement wraEl erment ;
WRA wr a;
Li st wraEl enents = root. get Chil d("WRADat a") . get Chi | dren("WRA") ;

70

string = "\nThere are + wraEl enents. si ze() +
" WRA elenments in the XM file.";
out.wite(string.getBytes());

for(int i =0; i < waEl enents.size(); i++) {
wr aEl ement = (El enent)w aEl ements. get(i);
| abel = wraEl enent. get Chil d("Label "). get Text();
nonencl ature = w aEl enent. get Chi | d(" Nomencl ature") . get Text ();
unitPrice = Doubl e. par seDoubl e(wr aEl enment .
getChild("UnitPrice").getText());
gtyPerAircraft = Integer. parselnt(w aEl emrent.
getChild("QyPerAircraft").get Text());
gtySpare = | nteger. parsel nt(w aEl ement.
getChild("Q ySpare").get Text());

ttfDistribution = waEl ement.

get Chi | d("MITFDi stribution").get Text();
ttfVal ue = Doubl e. par seDoubl e(wr aEl enment .
get Chi | d("MITFVal ue") . get Text ());

ttrDistribution = waEl ement.

get Chi | d("MITRDi stribution").get Text();
ttrVal ue = Doubl e. par seDoubl e(wr aEl enment .
get Chi | d("MITRVal ue") . get Text ());

ostDi stribution = waEl ement.

get Chi | d("OSTDi stribution").getText();
ost Val ue = Doubl e. par seDoubl e(wr aEl enment .
get Chi | d("OsTVal ue") . get Text());

ttf RV = RandomVvari at eFactory. getlnstance(ttfDistribution,
new Cbject[] {new Double(ttfValue)}, ttfRNG);

ttrRV = RandomVvari at eFactory. getlnstance(ttrDistribution,
new Cbject[] {new Double(ttrValue)}, ttrRNG);

ost RV = RandonVari at eFactory. getl nstance(ostDi stribution,
new Cbj ect[] {new Doubl e(ostValue)}, 0stRNG);

ttfMap. put (1 abel, ttfRV);

ttrMp. put (|1 abel, ttrRV);

ost Map. put (1 abel, ostRV);

wra = new WRA(| abel , nomenclature, ttfRV);

wr aMap. put (I abel , wra);

acAl | owanceMap. put (1 abel, new Integer(qtyPerAircraft));
spar eAl | owanceMap. put (I abel , new I nteger(qgtySpare));
out. cl ose();

out CSV. cl ose();

}
Systemout.println("Done processing the file: " + inputFile);
}
}
public static RandomNumber creat eTTFRNG El enent ttf SeedEl enent) {
int seed = Integer.parselnt(ttfSeedEl enent. getText());
return RandomNunber Fact ory. get | nstance(Congruenti al Seeds. SEED] seed]
}

public static RandomNumber creat eTTRRNG El enent ttrSeedEl enent) {
71

int seed = Integer.parselnt(ttrSeedEl enent. get Text());
return RandomNunber Factory. getl nstance(Congruenti al Seeds. SEEQJ seed]);

}
public static RandomNunmber creat eOSTRNG El enent ost SeedEl enent) {

int seed = Integer. parselnt(ostSeedEl enent. get Text());

return RandomNunber Factory. get | nstance(Congruenti al Seeds. SEEJ seed]);
}

public static void resetTi neVaryi ngStats() {
otStat.reset();
ot FMCSt at . reset () ;
stStat.reset();
fncStat.reset();
i nspect Stat.reset();

}

public static void resetScenario() {
wr aMap. cl ear () ;
ttfMap.clear();
ttrMap. clear();
ost Map. cl ear () ;
acAl | owanceMap. cl ear () ;
spar eAl | owanceMap. cl ear () ;
sparelnv. clear();
ato = null;

aoTal ly.reset ();

fncTal ly. reset();
i nFlightFailureFMCTally. reset();

72

package ace;

/**
* Capt M chael Margolis

* SIMACE v. 6.0

* Thesis Project

* July 1, 2003

* <pP>
* Comments: The "neat" of SIMACE. Coordinates the take-off, Ianding,
* supply requisitioning, and mai nt enance processes.
*/
i mport sinkit.*;
i mport sinkit.random *;
import sinkit.util.*;
i mport sinkit.stat.*;
i mport java.util.*;
i mport java.text.Deci nmal For mat ;
i mport exceptions. *;
public class ATO extends SinkEntityBase {
/1 instance vari abl es
private HashMap ttr Map; /1 time to repair RandomVari ates
private HashMap ost Map; /1 order and shipping time RandonVari at es
private Deci mal Format fnt; /1 formats nunbers
private Conparator w aConp; /1 conparator for the WRA AWP |ists
private Conparator readyConp; // conparator for the list of ready Aircraft
private double transitTinmne; /1 set inside the main
private doubl e patrol Ti nge; /1 set inside the main
private double inspectionTine; // set inside the nain
/1 state variables
protected Aircraft[] original Squadron
prot ected HashMap ori gi nal WRAMap;
protected ArraylList ready; /1 the list of "ready to go" Aircraft
prot ected HashMap nntMap; /1 NMC Aircraft
protected HashMap awpQueues; /1 for sorting aircraft by AW WRAs
protected WRAl nventory sparel nv; /1 inventory of spares
protected int nunttandBy; /1 the nunmber of Aircraft currently
/1 on stand by
protected int nunmOperational; /1 the nunber of Aircraft currently
/1 operational
protected int nunOperational FMC, /1 the nunber of Aircraft currently
/1 operational and FMC
protected int num nspect; /1 the nunmber of Aircraft currently
/1 being inspected
protected int nunFMC; /1 the nunber of Aircraft currently FMC
prot ect ed bool ean needed; /1 true when an Aircraft is needed
/1 for a sortie

// constructor nethods

/**

73

* Reads in an array of hjects. |If an array is not read in,
* the only other way to read in the paraneters would be an
* extremely long list of paraneters, which would be very ugly.
**/
public ATQ(nject[] parans) {
ready = new ArraylList();

nncMap = new HashMap();
ttrMap = new HashMap();
ost Map = new HashMap();

awpQueues = new HashMap();

sparel nv = new WRAI nventory();

fnt = new Decinal Format ("0.00");

wr aConp = new Ai rcraft WRAConpar at or () ;
readyConp = new Aircraft ReadyConparator();

ori gi nal Squadron = (Aircraft[])parans[0];

/1 parans[1l] = the sparelnv, a WRAInventory
set Sparel nv((WRAl nventory) parans[1l]);

/1 params[2] = a copy (not clone) of the original Iist of WRAs
ori gi nal WRAMap = (HashMap) par ans[2] ;

/1 paranms[3] = HashMap of WRA TTR, key = WRA | abel
set TTR((HashMap) parans[3]);
/1 params[4] = HashMap of WRA OST, key = WRA | abel

set OST((HashMap) parans[4]);

/1 parans[5] = transitTine, a double
setTransit Time(((Double) paranms[5]).doubl eval ue());

/1 parans[6]

= patrol Tinme, a double
set Patrol Ti me((

(Doubl €) parans[6]).doubleVvalue());

/1 params[7] = inspectionTinme, a double
set I nspectionTinme(((Double) parans[7]).doubl eValue());

set Needed(true);

}

/1 instance nethods

/**

* How the simulation gets going (junp started).
**/

public void doRun() {
Aircraft aircraft;
firePropertyChange("standBy", 0, getNunttandBy());
set Needed(f al se);
wai t Del ay("TakeOrf", 0.0, renpveNextReady());

}

/**
* An Aircraft takes off (starts its sortie) and then starts its
* patrol. The patrol is scheduled to begin after the Aircraft

* transits to its patrol area (on station). Another Aircraft wll
74

* be need to be on station before the one that is currently on patrol
* departs station to return to base. So, another Aircraft wll

* be needed in getPatrol Time(). Property changes are fired here

* pbecause the Aircraft does not become operational until it

* actually takes-off.

**/

public void doTakeOf(Aircraft aircraft) {
aircraft.startSortie();
aircraft.startSortie(getSortieTinme());
firePropertyChange("standBy", nunttandBy, --nunttandBy);
firePropertyChange("operational", nunOperational, ++nunOperational);
firePropertyChange("operational FMC', nuniperati onal FMC,
++nunper at i onal FMC) ;
wai t Del ay("StartPatrol", getTransitTime(), aircraft);
wai t Del ay("NeedsAircraft", getPatrol Tine(), 1.0);

}

/**

* This event tells the systemthat an Aircraft isNeeded().
**/
public void doNeedsAircraft() {
set Needed(true);
i f(getNunReady() > 0) {
set Needed(false);
wai t Del ay("TakeOrf", 0.0, renopveNextReady());

}
/**

* An Aircraft starts a patrol and its end patrol tine is
* schedul ed.
**/
public void doStartPatrol (Aircraft aircraft) {
wai t Del ay("EndPatrol", getPatrol Tinme(), aircraft);
}

/**

* An Aircraft ends its patrol and its landing tine
* is schedul ed.
**/
public void doEndPatrol (Aircraft aircraft) {
wai t Del ay("Land", getTransitTime(), aircraft);
}

/**

* An Aircraft lands and begins its post-flight inspection process
* is scheduled. This sinulation sets the post-flight inspection
* to inredi ately begin after landing. O course, this can
* be changed by anyone in the future.
**/
public void doLand(Aircraft aircraft) {

aircraft.endSortie();

firePropertyChange("operational", nunOperational, --nunOperational);

if(taircraft.getlnFlightFailure()) {

firePropertyChange("operational FMC', nun{perational FMC
--nunper ati onal FMC) ;

75

}
wai t Del ay("Startlnspect”, 0.0, aircraft);

}
/**

* An Aircraft begins its post-flight inspection. The end inspection
* time is then schedul ed.
**/
public void doStartlnspect(Aircraft aircraft) {
firePropertyChange("inspecting", numl nspect, ++num nspect);
wai t Del ay("Endl nspect"”, getlnspectionTine(), aircraft);

}
/**
* An Aircraft ends the post-flight inspection process.
* |f the Aircraft isFMZ() it is returned to the |ist
* of ready Aircraft. |If the Aircraft is !isFMX),
* this means that it has failed WRAsS and nust begin
* the StartAircraftRepair process.
**/
public void doEndl nspect(Aircraft aircraft) {
firePropertyChange("inspecting", numlnspect, --num nspect);
if(aircraft.isFMC())
wai t Del ay("AddToReady", 0.0, aircraft);
}
el se {
addToNMC(aircraft);
waitDel ay("StartAircraftRepair”, 0.0, aircraft);
}
}
/**
* Places an Aircraft into the list of Aircraft ready
* for a sortie. If an Aircraft isNeeded(), then the

* Aircraft nost recently added to the Iist of ready
* Aircraft is scheduled to imredi ately take off.
**/
public void doAddToReady(Aircraft aircraft) {
addToReady(aircraft);
firePropertyChange("standBy", nunttandBy, ++nunfttandBy);
i f(isNeeded()) {
set Needed(fal se);
wai t Del ay("TakeOrf", 0.0, renoveNextReady());

}
}
/**
* Starts the Aircraft repair process. Since an Aircraft is starting the
* repair process, it rmust have failed WRAs that were determ ned so during
* inspection process. Each of the failed WRAs are checked for availability
* in the inventory of spares. |If a spare WRA exists, the spare is renpved
* fromthe inventory of spares, is placed in work, and the installation
* process begins. The spare WRA taken fromthe inventory of spares
* must be replentished so a replacenent WRA nust be ordered. |If a
* spare WRA matching that of the failed WRA does not exist inside
* the spares kit (inventory) it nust be ordered and until the WRA
*

is received for the Aircraft in need the Aircraft in need is
76

* considered awaiting parts (AWP) for this WRA
* %
/
public void doStartAircraftRepair(Aircraft aircraft) {
WRA spar eV\RA;
VRA newWRA;
doubl e total TTR = 0. 0;

whil e(aircraft. hasFail edWRAS()) {

WRA fail edWRA = aircraft.renoveFai |l edWRA() ;

i f(getNunmberOf Spare(failedWRA) > 0) {
spar eWRA = get Spare(fail edWRA);
total TTR += get Next TTR(spareWRA);
aircraft.addl nwork(spareWrA);
new\RA = new WRA(fail edWRA);
wai t Del ay("StartOST", 0.0, new\RA);

}
el se {
aircraft.addAWP(fail edWRA);
addToAWPQueues(fail edWRA);
new\RA = new WRA(fail edVWRA);
wai t Del ay("StartOST", 0.0, new\RA);
}

}
if(total TTR > 0.0) {

wai t Del ay("EndAircraftRepair", total TTR, aircraft);
}

*

an Aircraft was AWP for was delivered. This neans that there

L T SR

* be installed, these WRAs are transferred fromits "noreToDo"
*toits "inWwrk" Iist.
**/
public void doEndAircraftRepair(Aircraft aircraft) {
aircraft.transferl nWorkToAircraft();
if(aircraft.isFMC()) {
renoveFromNMC(aircraft);
firePropertyChange("fnc", nunFMC, ++nunFMO) ;
wai t Del ay("AddToReady", 0.0, aircraft);

}
else if(aircraft.hasMreToDo()) {
doubl e additional TTR = transferMoreToDo(aircraft);
wai t Del ay("EndAircraftRepair", additional TTR aircraft);

}
}
/**
* Starts the ordering and shipping process to replace a failed WRA.
* The ordering and shipping tine (ost) is generated and the new WRA i s
* ordered. This sinulation uses only one OST for all WRAs. This is not
* how things work in reality. 1In the real world, there is hi-priority

and routine shipping, each of which has a different val ue.
77

An Aircraft ends the repair process. |If the Aircraft isFMZ() after
it finishes the repair process, it is renoved fromthe HashMap of
NMC aircraft and i nmedi ately added to the Array of ready Aircraft.
The case coul d exist that upon the conpletion of a repair, a WRA

is additional work to be done. So if the Aircraft has nore WRAs to

**/
public void doStart OST(WRA newRA) {
String | abel = newMRA. get Label ();
doubl e tineFor OST = ((RandonVari at e) ost Map. get (|1 abel)). generate();
wai t Del ay("EndOST", timeFor OST, newWRA);

A VWRA arrives fromthe ordering and shipping process. Before being
installed, the Aircraft nost in need for this WRA nust be deternined.
If none of the Aircraft are in need of the inbound WRA, it is
considered ordered as a replentishnment itemand is therefore
pl aced (returned) into the inventory of spares.
**/
public voi d doEndOST(WRA newMRA) {
assi gnNeedyAi rcraft(newRA);
Aircraft aircraft = newRA. get Bel ongsTo() ;
if(aircraft == null) {
addSpare(newMRA);

* %k F X X

el se {
if(aircraft.haslnwork()) {
aircraft.remveAWP(newRA) ;
aircraft.addMor eToDo(newWRA) ;

}
el se {
aircraft.remveAWP(newRA) ;
ai rcraft. addl nWwor k(newRA) ;
wai t Del ay("EndAircraftRepair", getNextTTR(newRA), aircraft);
}
}
}
/**
* Listens for an InFlightWRAFailure in class Aircraft.
* %
/

public void dol nFlight WRAFai | ure() {
firePropertyChange("operational FMC', numOper ati onal FMC,
- - nunper at i onal FMO) ;

*

Returns the Aircraft that is nmpbst in need of the specified WRA
Only those Aircraft non-mission capable (NMC) are considered
eligible for the WRA. The priority goes to the first aircraft in
the NMC queue that only needs this WRA to become FMC. |f none of
the Aircraft in the NMC queue only need this WRA to becone FNC,
the WRA goes to the Aircraft with the nost NMC tinme. |If there is
atie for the above two sorting criteria, then the WRA goes to
the Aircraft with the | owest tail Nunmber.
**/
public WRA assi gnNeedyAircraft(WRA new\RA) {
Aircraft aircraft = null;
ArraylLi st queue = (ArraylList) awpQueues. get (newMRA. get Label ());
i f(!'queue.isEmpty()) {

Col l ections.sort((List)queue, waConp);

for(Iterator iter = queue.listlterator(); iter.hasNext();) {

78

L I R T T

aircraft = (Aircraft)iter.next();

}

aircraft = (Aircraft)queue.renove(0);
i f(aircraft.get NumAWP(newRA) > 1) {
gueue. add(aircraft);
}
}

newMRA. set Bel ongsTo(aircraft);
return newRA

—

*

~

E I T I .

Returns the additional amount of repair time necessary to conplete
repairs of WRAs that arrived for a given Aircraft during the
Aircraft's active repair period. Al WRAs that arrived when the
Aircraft was in an active state of repair are renoved fromthe
Aircraft's "noreToDo" |ist and then added to the Aircraft's

"i nWork" list.

*
~

public doubl e transferMreToDo(Aircraft aircraft) {
WRA wr a;
String | abel;
doubl e addi tional TTR = 0. 0;
whil e(aircraft. hasMreToDo()) {
wra = aircraft.renmoveNext ToDo();
ai rcraft.addl nwork(w a);
addi ti onal TTR += get Next TTR(wr a) ;

}
return additional TTR

}
/**

* Sets the squadron up at the beginning of the simulation. Each
* Aircraft in the squadron is added to the queue of ready Aircraft.
**/
public void setReady(Aircraft[] squadron) {
for(int i = 0; i < squadron.length; i++) {
addToReady(squadron[i]);

}
nuntt andBy = ready. si ze();
nunFMC = ready. si ze();

}

/**
* Adds an Aircraft to the queue of ready Aircraft. WII not
* add the Aircraft to the queue if it is already contained
* in the queue.
**/
public void addToReady(Aircraft aircraft) {
if(!'ready.contains(aircraft)) {
ready. add(aircraft);
}

}
/**

* Adds an Aircraft to the HashMap of Non-m ssion Capabl e (NVO)
* Aircraft.

79

**/

public void addToNMZ(Aircraft aircraft) {
aircraft.start NMCTi me();
nncMap. put (aircraft.toString(), aircraft);
firePropertyChange("nntAdd", aircraft);
firePropertyChange("fnt", nunFMC, --nunFMO);

}

/**
* Adds a WRA to the spares kit. For exanple, a WRA is added to
* the spares kit when the WRA arrives fromthe requisition (OST)
* process and no Aircraft needs it.
**/
public void addSpare(WRA wra) {
sparel nv. addltem wa);
firePropertyChange("spareAdd", wa);
}

/**
* Adds the Aircraft this WRA belongs to, to the appropriate queue of
* AWP WRAs. Each WRA has its own AWP queue. |f the Aircraft
* |s pre-existing inside the queue that is being added to, the Aircraft
* |is not added.
**/
public void addToAWPQueues(WRA fail edWRA) ({
Aircraft aircraft = fail edWRA. get Bel ongsTo();
ArrayLi st queue = (ArraylList) awpQueues. get(fail edWRA getLabel ());
i f('queue.contains(aircraft)) {
gqueue. add(aircraft);
firePropertyChange("addToAWPQueue", fail edWrA);

}

/**
* Sets the time to repair (ttr) HashMap of RandonVari at es.

**/

public void set TTR(HashMap ttrMap) {
this.ttrMap = ttrMap;
}

/**

* Sets the ordering and shipping tine (ost) HashMap
* of RandonVari at es.

**/

public void set OST(HashMap ostMap) {
this. ostMap = ost Map;
}

/**

* Sets the sparelnv of spare WRA objects.

**/

public void setSparelnv(WRAInventory sparelnv) {
this.sparel nv = sparelnv;
}

/**
* Each WRA has its own AW queue. Each queue contains Aircraft
80

* this WRA is AW for.
**/
public void set AWPQueues(HashMap wraMap) {
for (lterator iter = walMap. keySet().iterator(); iter.hasNext();
String key = (String)iter.next();
ArraylLi st queue = new ArraylList();
awpQueues. put (key, queue);

}
/**

* The actual tinme an Aircraft is required to conduct a patrol,

* excluding the transit time to and fromthe patrol area.

**/

public void setPatrol Tine(double patrolTime) {
this.patrol Time = patrol Ti ne;

}

/**

* The time required for an Aircraft to fly to/fromits patrol

* area (one way). The transit tinme will be the sane for going to
* its patrol area as returning fromit.

**/

public void setTransitTime(double transitTine) {
this.transitTinme = transitTi ne;
}

/**
* The duration of an Aircraft's post-flight inspection.
**/
public void setlnspectionTinme(double inspectionTinme) {
this.inspectionTinme = inspectionTing;
}

/**

* Returns the total nunmber of Aircraft. That is, the total nunber
* of FMC and NMC Aircraft.
**/
public int getTotal NunberOf Aircraft() {
return origi nal Squadron. | engt h;
}

/**
* Returns the nunber of aircraft that are full m ssion capable
* (FMC). FMC Aircraft are defined to be those that are ready,
* tasked, flying, and being inspected. Note: Just because an
* Aircraft is FMC does not nean it is Qperationally Avail able.
**/
public int get NumFMZ() {

return original Squadron.length - get NumNMZ();
}

/**

* Returns the nunber of Aircraft that are NMC.

**/
public int get NumNMC() {
return nnchMap. si ze();

81

)

{

}

/**
* Returns the nunber of Aircraft ready for a sortie.
**/
public int getNunReady() {
return ready. size();
}

/**

* Returns the nunber of Aircraft that are currently
* operational (flying).
**/
public int getNunOperational () {
return numOperational ;
}

/**
* Returns the nunber of Aircraft that are currently
* on stand-by. That is, the nunmber of Aircraft that
* are ready for a sortie, but have not taken-off yet.
**/
public int getNunttandBy() {

return nuntt andBy;
}

/**
* Tells the systemthat an Aircraft is needed for a sortie.

**/

public void set Needed(bool ean needed) {
t hi s. needed = needed;
}

/**

* Renoves the next Aircraft in the queue that are ready for
* a sortie. The queue is sorted by class AircraftReadyConparat or.
**/
public Aircraft renpveNextReady() ({
Aircraft aircraft = null;

if(ready.iseEnpty()) {
t hr ow new RenpbveNext ReadyException();

}
el se {
Col l ections.sort((List)ready, readyConp);
aircraft = (Aircraft)ready.renove(0);
}
return aircraft;
}
/**

* Renoves a given Aircraft fromthe HashMap of NMC
* Aircraft.
**/
public void removeFromNMC(Aircraft aircraft) {
nnmcMap. remove(aircraft.toString());
aircraft. endNMCTi ne() ;

82

firePropertyChange("renmoveNMC', aircraft);
}

/**

* Returns the patrol time, exclusive of the transit tine
* to/fromthe patrol area
**/
public double getPatrol Time() {
return patrol Ti ne;
}

/**

* Returns the transit tine. The flight tine to/fromthe
* patrol area
**/
public double getTransitTine() {
return transitTine;
}

/**

* Returns the inspection tine. The duration of an Aircraft's
* post-flight inspection.
**/
public doubl e getlnspectionTime() ({
return inspectionTine;
}

/**
* Cenerates and returns the repair tinme for a specified WRA
**/
public double getNext TTR(WRA wa) {
String | abel = wra. getLabel ();
return ((RandonVariate)ttrMap. get(label)).generate();

}
/**

* Returns the total tine of an Aircraft's sortie. Sortie time
* is equal to its patrol tine plus its transit time to/from
* the patrol area.
**/
public doubl e getSortieTime() {
return getPatrol Tine() + 2.0 * getTransitTime();
}

/**

* Returns true if an Aircraft is needed for a sortie.
**/
public bool ean i sNeeded() ({
return needed;
}

/**

* Returns the nunber of a particular WRA

* that are available in the spares kit.

**/

public int getNunber Of Spare(WRA wa) {
return sparelnv. get Nunberl nSt ock(w a);

&3

}
/**

* Renmpbves a WRA fromthe spares kit and returns
*it.

**/

public WRA get Spare(WRA wa) {

VWRA tempWRA = nul | ;

i f(sparel nv.get Nunberl nStock(wa) >0) {
tempWRA = sparelnv.renmoveltem wa);
firePropertyChange("spareRenoval", wa);

}

return tenpWRA,

}
/**

* Resets at the start of each sinulation run.
**/
public void reset() {

super.reset();

ready. cl ear () ;

nncMap. cl ear () ;

awpQueues. cl ear () ;
sparel nv. cl ear ();

set Ready(ori gi nal Squadron);
set AWPQueues(ori gi nal WRAMap) ;
needed = true;

nunOper ati onal = O;
numOper at i onal FMC = 0;

num nspect = 0;

84

package ace;

/

* 0%k kX X F F

~

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<P>

Comments: Creates an instance of an Aircraft object.

i mport java.util.*;
i mport java.text.?*;
i mport sinkit.*;

i mport exceptions. *;

public class Aircraft extends SinEntityBase {

/'l instance vari abl es

private double startSortieTi ne; /1 tinme the AC takes off for
private double total OperatingTine; // total operating tine of this
private doubl e startRepairTine; /1 time an AC begins a repair
private doubl e endRepairTi ne; /1l time the AC ends a repair
private doubl e startNMCTi ne; /1 time the AC starts being NMC
private String tail Number; /1 how each aircraft is identified

private Deci mal Format fnt;

prot ected bool ean fnt; /1 true if ACis FMC
protected boolean inFlightFailure; // true if AC has an

/1 inFlight\WRAFai l ure

protected WRAl nventory w al nv; /1 state variable
prot ected WRAl nventory awpl nv; /1 state variable
protected LinkedLi st inWrkList; /] state variable
protected LinkedLi st fail edList; /] state variable

protected LinkedLi st

/1 constructor

noreToDolList; // state variable

nmet hods

public Aircraft(String tail Nunmber) {
set Tai | Nunber (tail Nunber);
wral nv = new WRAI nventory();
awpl nv. = new WRAI nventory();

i nWor kLi st
fail edLi st

nor eToDoLi st

new Li nkedLi st ();

new Li nkedLi st ();
new Li nkedLi st (
fnt = new Decinal Format ("0.00
startSortieTi ne
st art NMCTi e

)
n);
Doubl e. NaN;

Doubl e. NaN;

}

/] instance nethods

/**

* Tail nunbers are two digit Strings. For exanple,
* n OOII , n 07" , and n 11" i

**/

public void setTail Nunber(String tail Nunber) {

85

this.tail Nunber = tail Nunber;
}

/**

* Sets the tine that this Aircraft starts getting repaired.
**/
public void setStartRepairTi ne(double startRepairTinme) {
this.startRepairTime = start RepairTine;
}

/**

* Sets the Simline this Aircraft will end it's repair.
**/
public void set EndRepair Ti ne(doubl e endRepai r Ti ne) {
t hi s. endRepai r Ti me = endRepai r Ti me;
}

/ *
Adds a WRA to the Aircraft. The WRA that is added is an individual
WRA whose instance "belongs" to this Aircraft. The WRA is setBel ongsTo
this Aircraft and the WRA's tinme to failure (ttf) is reset. The ttf
is only reset when added to the Aircraft object. A WRA should be added
to the Aircraft only when initializing the Aircraft or at the
conclusion of the WRA's repl acenment following a repair process.
**/
public void addWRA(WRA wra) {

wr a. set Bel ongsTo(t hi s);

wra.reset TTF();

wr al nv. addl t en{w a) ;

firePropertyChange("addWrRA', wa);

E o T T T

}
/**

* Adds multiple copies of a particular WRA to the Aircraft. This is
* a method for convienience.

**/
public void addWRA(WRA wra, int nunberO Copies) {
for(int i =0; i < nunber O Copies; ++i) {
addWRA(new WRA(wa));
}
}
/**

* Adds a WRA to the awaiting parts (awp) WRAlnventory. That is,
* adding the WRA to this WRAl nventory neans a spare isn't in the
* spares kit and/or the part is not available in sonme way/shape/form
* |t nmust be requisitioned (ordered and received) prior to installation.
**/
public void addAWP(WRA wra) {
wr a. set Bel ongsTo(t hi s);
awpl nv. addl tem(wr a) ;
firePropertyChange("addAW", wa);
}

/**

* Adds a WRA to the inWrk WRAInventory. That is, adding the WRA to this
* WRAlI nventory neans the WRA is being installed on this Aircraft.

86

**/
public void addl nwork(WRA wa) {
wr a. set Bel ongsTo(t hi s);
i nWbr kLi st. add(wr a) ;
firePropertyChange("addl nWwork", wa);

}
/

*

If the Aircraft is being repaired when another WRA arrives fromthe
supply process, the inbound WRA is added to this queue so that when
the current repair process ends, this queue can be checked to see if
nore WRAs need to be installed (replaced). That is, if WRAs are added
to this queue, this means that there is nore work to do after the
Aircraft ends its current active state of repair.

**/

public void addMboreToDo(WRA wra) {

wr a. set Bel ongsTo(this); // just to nake sure

nor eToDoLi st. add(wa);

firePropertyChange("addMbreToDo", wa);

EE T I R

}

/**
* Tells the Aircraft to start a sortie. Al WRAs are notified that a
* sortie is starting.
**/
public void startSortie() {
setInFlightFailure(false);
Set | abels = walnv. keySet ();
Li st inventory = null;

WRA wr a;
for(lterator iter = labels.iterator(); iter.hasNext();) {
inventory = walnv.getWRALi st ((String)iter.next());
for(lterator inventorylter = inventory.listlterator();
i nventorylter. hasNext();) {
wa = (WRA)i nventorylter.next();
wra.startSortie();
firePropertyChange("waStartSortie", wa);
}
}
start SortieTi me = Schedul e. get Si nTi ne() ;
}
/**
* The following method is for testing purposes. It may be necessary
* to delete it later.
**/
public void startSortie(double sortieTinme) {
Set | abels = wralnv. keySet ();
List inventory = null;
WRA wr a;
doubl e nmin = Doubl e. PCSI TI VE_| NFI NI TY;
doubl e post Sorti eTTF;
for(lterator iter = labels.iterator(); iter.hasNext();) {
i nventory = walnv.getWRALi st ((String)iter.next());
for(lterator inventorylter = inventory.listlterator();

i nventorylter.hasNext();) {
wa = (WRA)inventorylter.next();

87

post Sorti eTTF = -(wra.getTTF() - sortieTine);

if(postSortieTTF > 0.0 && postSorti eTTF < mn) {
mn = postSortieTTF;

}

} }
if(min != Double. POSITIVE_INFINITY) {

setInFlightFailure(true);
wai t Del ay("I nFlight WRAFai lure", mn, 2.0);

}

/**

* Tells the Aircraft to end a sortie. Al WRAs are notified that
* a sortie is ending. Each WRA is checked as to if its ttf is < 0.0.
* |f so, it is considered failed and nust be added to the Aircraft's
* failedList.
**/
public void endSortie() {

Set | abels = wal nv. keySet ();

List inventory = null;

VRA wr a,;

for(lterator iter = labels.iterator(); iter.hasNext();) {
i nventory = walnv.getWRALi st ((String)iter.next());
for(lterator inventorylter = inventory.listlterator();

i nventorylter. hasNext();) {
wa = (WRA)inventorylter.next();
wra. endSortie();
firePropertyChange("w aEndSortie", wa);
if(wa.isFailed()) {
fail edLi st.add(wa);
i nventorylter.renove();
firePropertyChange("fail edWRA", wra);

}
}
total OperatingTi ne += Schedul e. getSinili me() - startSortieTi ne;
start SortieTi me = Doubl e. NaN

/**

* Sets the time that an in-flight failure (mal function) occurs.
**/

public void setlnFlightFailure(boolean inFlightFailure) {
this.inFlightFailure = inFlightFailure;
}

/**

* Returns true if there is/was an in-flight failure (malfunction).

**/

public bool ean getlnFlightFailure() {
return inFlightFailure;
}

/**
* Sets the time the Aircraft becones non-ni ssion capabl e (NMO)
88

**/

public void start NMCTi me() {
start NMCTi me = Schedul e. get Si nTi ne() ;
}

/**
* Notifies the Aircraft that it is no | onger NMC
**/
public void endNMCTi ne() {
start NMCTi me = Doubl e. NaN,;
}

/**
* Returns the amount of time this Aircraft has been NMC during
* jts current period of being NMC. Not a sumof all NMC tine,
* put of how much tinme being NMC since nost recently becomi ng NMVC.
**/
publ i c doubl e get NMCTi me() {

if(isFMI()) {

Systemout.println("Possible ERROR in class Aircraft:
nmet hod get NMCTi ne() accessed, yet Aircraft is FMC.");

}
return Schedul e. get Si nili me() - startNMCTI ne;

}
/**
* Returns the cunulative of operating tine for this Aircraft.
* This is reset at the beginning of each simulation run.
**/
public doubl e get Total OperatingTi me() {
return total OperatingTi ne;
}

/**
* Protected nethod. Updates the Aircrafts FMC status.
**/
protected void updateFMC() {
fnc = failedList.isEmpty() && awplnv.isEnpty() &&
i nWr kLi st. i sEnpty() && noreToDoli st.isEnmpty();
}

/**

* Returns true if the Aircraft is full mission capable (FMJ).
* Fal se ot herwi se.

**/
public bool ean i sFMZ() {
updat eFM() ;
return fnc;
}
/**
* Returns true if the Aircraft has fail ed WRAs.
**/

public bool ean hasFai | edWRAS() {
return !failedList.isEmpty();
}

&9

/**
* Returns the nunber of failed WRAs.
**/
public int getNunfail ed() ({
return failedList.size();

}

/**

* Returns true if the Aircraft has additional WRAs that need to

* pbe installed. WRAs are added via this nmethod when a WRA

* arrives that the Aircraft needs when the Aircraft is currently

* in an active state of repair. After the Aircraft

* conpletes the current state of repair, this nmethod is referenced
* to check if any nore WRAs arrived. |If so, this nmethod returns

* true.

**/

publ i c bool ean hasMreToDo() {
return !'noreToDoList.isEmpty();
}

/**

* Returns true if the Aircraft has any WRAs that are in the process
* of being installed (in work) on this Aircraft.
**/
publ i c bool ean hasl nWork() {
return i nwbrkLi st. i sEmpty();
}

/**

* Returns true if the Aircraft is on the ground. That is, is not flying.
**/
public bool ean i sOnGround() {
return Doubl e.isNaN(startSortieTime);
}

/**

* Returns the total quantity of WRAs that this Aircraft is awaiting
* parts for.
**/
public int getTotal NumAWP() {
return awpl nv. si ze();
}

/**

* Returns the quantity of a type WRA this Aircraft is awaiting
* parts for.
**/
public int get NumAWP(WRA wra) {
return awpl nv. get Nunber I nSt ock(w a) ;
}

/**

* Returns the quantity of a type WRA this Aircraft is awaiting
* parts for.
**/
public int getNumAWP(String | abel) {
return awpl nv. get Nunber I nSt ock(| abel) ;

90

}

/**
*

Renbves a WRA fromthe Aircraft's failed WRA list. The WRA shoul d
* then be added to the Aircraft as AW, or inWrk.

**/
public WRA renoveFai | edWRA() {
WRA wa = null;
if(!failedList.isEnpty()) {
wa = (WRA)fail edLi st.renmoveFirst();

el se {

Systemout.print("Possible ERROR in class Aircraft,
nmet hod renoveFail edWRA: " + this);

Systemout.println(" does not have failed WRAs to get.");

}
return wa;
}
/**
* Renpves a WRA fromawaiting parts (AWP).
**/

public void removeAWP(WRA wa) {
awpl nv. renoveltem wa);
firePropertyChange("removeAW", wa);

}
/**

* Renmpves a WRA fromawaiting parts (AWP).

**/

public void renmoveAWP(String |abel) {
WRA wa = awpl nv. renovelten{ |abel);
firePropertyChange("removeAW", wa);

}
/**

* Returns the next WRA in the queue that holds WRAs which arrive
* to an Aircraft during an active state of repair.
**/
public WRA renoveNext ToDo() {
WRA wa = null;

try {
i f(nmoreToDoList.isEmpty()) {
t hr ow new RenmpveNext ToDoExcepti on();

}
el se {
wra = (WRA) noreToDolLi st.renoveFirst();
firePropertyChange("renoveNext ToDo", wra);
}

cat ch(RenoveNext ToDoException e) {

System out. println(e. get Message());
System exit(0);
}

return wa;

91

/**
* Returns the tail number as a two digit String.
*].e. "00", "O7", "11".
**/
public String getTail Nunber () {
return tail Nunber;
}

/**
* Returns the integer (int) value of the Aircraft's tail nunber.
**/
public int getTail Numberlint() {
return I nteger. parselnt(tail Nunber);
}

/**

* Returns the time at which this Aircraft began its current
* repair session.
**/
public double getStartRepairTime() {
return startRepairTine;
}

/*
* Returns the SinTine this Aircraft will end it's current repair process.
*/
publ i c doubl e get EndRepai rTi ne() {
return endRepair Ti ne;
}

/**
* Transfers all WRAs that are currently inWwrk back to the Aircraft.

* WRAs returned to the Aircraft via this nethod are consi dered to have
* their installation conplete.

**/
public void transferlnWorkToAircraft() {
WRA wr a;
for(lterator iter = inWrkList.listlterator(); iter.hasNext();) {
wa = (WRA)iter.next();
addWRA(wr a) ;
iter.renove();
}
}
/**
* Resets at the start of each sinulation run.
**/

public void reset() {
total OperatingTinme = 0.0;
fnc = true;
wral nv. cl ear();
awpl nv. cl ear () ;
i nWor kLi st. clear();
fail edList.clear();
nor eToDoLi st. cl ear();

92

/**

* Returns a String of information about this Aircraft.
**/
public String paranttring() {
StringBuffer buf = new StringBuffer("\n");
buf . append(toString());
buf . append("\ nwal nv: ") ;
buf . append('\n');
buf . append(w al nv);
buf . append(“\ nfail edList:");
buf . append('\n');
buf . append(fail edList);
buf . append("\ nawpl nv: ") ;
buf . append('\n');
buf . append(awplnv);
buf . append("\ ni nWr kLi st:");
buf . append('\n');
buf . append(i nWorkLi st);
buf . append("\ nnor eToDoLi st:");
buf . append('\n');
buf . append(noreToDoLi st);
return buf.toString();

}
/**

* Returns a String with the Aircraft's tail nunber.
* For exanple, "Aircraft 04".
**/
public String toString() {
return "Aircraft " + getTail Nunber();
}

93

package ace;

*

/
Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<P>

Comments: Creates an instance of a weapons repl aceabl e assenbly (WRA).

* 0%k kX X F F

~

i mport java.text.Decinal For mat ;
i mport java.util.?*;
i mport sinkit.random *;

i mport sinkit.*;
import sinkit.util.*;
i mport sinkit.stat.*;

public class WRA {

private static int nextlD = O; /1 unique ID for each specific WRA
private Deci mal Format fnt; /1 formats nunbers

private String |abel; /1 how the WRA is referenced
private String nomencl ature; /1 nanme of this WRA

private Aircraft bel ongsTo; /1 what AC this WRA belongs to
private RandonVariate nextFailureTime; // failure time rng

private double startSortieTi ne; /1l tinme the WRA starts a sortie
private double endSortieTi e; /1 time the WRA ends a sortie
private int id; /1 unique ID for EACH specific WRA
protected double ttf; /] state variable

/**

* Three parameter constructor to create an instance of a WRA

**/

public WRA(String | abel, String nomencl at ure,
RandonVari at e next Fai l ureTi me) {

set Label (| abel); /1 give the WRA a | abel
set Norencl at ure(nonencl ature); /1 give the WRA a nane
set Next Fai | ureTi ne(nextFailureTinme); /1 failure tine rng

fnt = new Deci nmal Format ("0.00");
id = ++next| D,

}
/**

* Single parameter constructor to create an instance of a
* WRA sinmiliar to that of another WRA
**/
public WRA(MWRA wra) {
thi s(wra.getLabel (), wa.getNonmenclature(),
wr a. get Next Fai l ureTi me());

}
/**
* Sets the | abel of the WRA.
94

**/

public void setlLabel (String | abel) {

this.label = |abel
}
/**
* Sets the nomencl ature of the WRA
**/

public void setNomenclature(String nomenclature) {
t hi s. nomencl ature = nonencl at ure;
}

/**

* Sets the time to failure (ttf) random nunber generator fromwhich ttf

* times are created.
**/
public void setNextFailureTi ne(RandonVariate nextFailureTime) {
this.nextFailureTi ne = nextFail ureTi nme;
}

/**
* CGenerates and resets the WRA's tine to failure (ttf).
**/
public void reset TTF() {
set TTF(next Fai l ureTi me. generate());
}

/**
* Sets the time to failure (ttf). This nethod is only accessabl e
* internally fromthis specific WRA object.
**/
protected void set TTF(double ttf) {
this.ttf = ttf;
}

/**
* Sets this WRA as belonging to a specific Aircraft.
**/
public void setBel ongsTo(Aircraft aircraft) {
bel ongsTo = aircraft;
}

/**
* Sets the time at which the WRA begins a sortie.
**/
public void startSortie() {
start SortieTi me = Schedul e. get Si nTi ne() ;
}

/**

* Re-calculates the WRAs tinme to failure. Deducts the tine of
* the sortie fromthe pre-existing tine to failure (ttf).
**/
public void endSortie() {
ttf = ttf - Schedul e.getSinlinme() + startSortieTi ne;
start SortieTi me = Doubl e. NaN

95

/**
* Returns the tine to failure (ttf) random nunber generator
**/
publ i c RandonmVari at e get Next Fail ureTi me() ({
return nextFailureTi ne;

}
/**
* Returns the WRA's tine to failure (ttf).
**/
public double getTTF() {
return ttf;
}
/**

* Returns the WRA label. This is usually the 9-digit NIN
**/
public String getlLabel () {
return | abel
}

/**
* Returns the WRA nomencl ature (nane).
**/
public String getNonenclature() {
return nomencl at ure;
}

/**
* Returns, but does NOT renove, the Aircraft object
* that this WRA belongs to. Returns null if the individua
* WRA has not been assigned to an Aircraft.
**/
public Aircraft getBelongsTo() {
return bel ongsTo;

}
/**
* Renpves and returns the Aircraft object that this WRA bel ongs to.
* Returns null if the individual WRA was never assigned to an
* Aircraft.
**/

public Aircraft renoveBel ongsTo() {
Aircraft aircraft = getBel ongsTo();
set Bel ongsTo(null);
return aircraft;

}
/**

* Returns true if the WRA is failed. That is, returns true
* if the WRA tine to failure (ttf) is <= 0.0.
**/
public bool ean isFailed() {
return ttf <= 0.0;
}

96

/**

* Returns true if the WRA is on the ground. That is, returns
* true if the Aircraft is not flying.
**/
public bool ean i sOnGround() {
return Doubl e.isNaN(startSortieTinme);
}

/**

* Returns a String with information pertaining to this
* specific WRA
**/
public String toString() {
StringBuffer buf = new StringBuffer("ID=");
buf . append(id);
buf . append(", WRA=");
buf . append(getLabel ());
buf . append(", ");
buf . append(get Nonmencl ature());
buf . append(", TTF=");
buf . append(fnt.format(getTTF()));
buf . append(", bel ongsTo=");
buf . append(get Bel ongsTo());
return buf.toString();

97

package ace;

/

EE R T T T R B B

*

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<P>

Comments: Creates an instance of a WRAIlnventory object.

Aut hor: Arnol d Buss
Modi fied By: Capt M chael Margolis
/

import java.util.*;

i mport sinkit.*;
import sinkit.util.*;
i mport j ava. beans. *;

public class WRAl nventory extends SinEntityBase {

/!l instance vari abl es

HashMap i nventory; /1 each WRA has its own inventory
/**

* Creates a new i nstance of WRAI nventory.

**/

publ i c WRAlI nventory() {
i nventory = new HashMap();
}

/**

* Adds a Collection of items to the WRA inventory. O the
* items in the Collection, only WRA objects are added.

**/
public void addltens(Collection items) {
for (lterator i = items.iterator(); i.hasNext();) {
hject item=i.next();
if (iteminstanceof WRA) ({
addltem((\WRA) item;
}
}
}
/**

* Adds a specified nunmber of copies of a WRA obj ect
* to the inventory.

**/
public void addCopi es(WRA item int numnber Copi es) {
for (int i = 0; i < nunberCopies; ++i) {
addl tem(new WRA(iten));
}
}
/**

* Adds a WRA to the inventory.
98

**/

public void addlten(WRA item {

String | abel = item getLabel ();
List items = (List) inventory.get(Ilabel);
if (itenms == null) {

items = new LinkedList();

i nventory. put (Il abel, itens);

}
itens. add(iten);

}

/**

* Renpbves a WRA with the given nomenl cature fromthe
* inventory. There may be several instances of a WRA
* with this | abel and only one of themw Il be

* renoved.

**/

public WRA renovelten(String | abel) {

WRA item = nul | ;

List items = (List) inventory.get(Ilabel);

if (itenms !'=null && 'itens.isEnpty()) {
item= (WRA) itens.renove(0);

}
return item
}
/**
* Renpves a WRA similiar to the one specified from
* the inventory. The exact instance of WRA specified
* may not be renoved, but one with the sanme | abel
*will,
**/

public WRA renpvelten{WRA item {

return renmovelten(item getLabel ());

}

/**

* Returns the nunber of WRA objects with this | abel
* are in the inventory.

**/

public int getNunmberlnStock(String |abel) {

}

/**

}

*

*

List itens = (List) inventory.get(label);
i nt nunmberltens = O;
if (items !'= null) {
nunberltenms = itemns.size();
}

return nunberltens;

Returns the nunmber of WRA objects with this WRA's
| abel are in the inventory.

**/

public int getNunberlnStock(WRA wra) {

return getNunber | nStock(w a. getLabel ());

99

/**
* Returns the Set of keys used to identify WRA objects
* in the inventory. The keys refer to the WRA
* | abel s.
**/
public Set keySet() {
return inventory. keySet ();
}

/**
* Returns a List of WRA objects in the inventory that have the
* sanme |abel. For exanple, if there are 5 widgets in
* the inventory, a List of all 5 widgets will be returned.
**/
public List getWRAList(String |abel) {
return (List) inventory.get(label);
}

/**
* Returns the total nunber of WRA objects in the inventory.
**/

public int size() {

int count = O;

for(lterator iter =
iter.hasNext();) {
count += get Number |

nventory. keySet().iterator();

nStock((String)iter.next());
}

return count;

}
/**

* Returns true if the total nunber of WRA objects in inventory
* is zero.
**/
public bool ean i seEnpty() {
bool ean empty = fal se
if(size() ==0) {
enpty = true;

return enpty;
}

/**
* Clears the inventory.
**/
public void clear() {
i nventory. clear();
}

/**

* Returns a String listing the entire inventory.

**/

public String toString() {
StringBuffer buf = new StringBuffer("WRA I nventory");
buf . append('\n');
buf . append(" total size=");
buf . append(si ze());

100

for (lterator i = inventory.keySet().iterator(); i.hasNext();) {

String label = i.next().toString();

buf . append('\n');

buf . append(| abel) ;

buf . append(" - ");

buf . append(get Nunber I nSt ock(| abel));

buf . append(" itens:");

List items = (List) inventory.get(Ilabel);

if (itenms !'= null) {

for (lterator j = items.iterator(); j.hasNext();) {

buf . append("\n\t");
buf . append(j . next());

}

return buf.toString();

101

package ace;

~

* 0%k kX X F F

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<P>

Comments: Creates an instance of an AircraftReadyConparator object.

*
~

i mport java.util.*;

public class AircraftReadyConparator inplenments Conparator {

/

/

/ instance methods

* *

* The sorting criterea for ready Aircraft.
* Priority:

* 1) | owest total OperatingTi ne

* 2) lowest tail Nunber

**/

public int conpare(Chject first, Object second) {

if (first == second) { return O; }

if (first instanceof Aircraft && second instanceof Aircraft) {
Aircraft f = (Aircraft) first;
Aircraft s = (Aircraft) second;

/*

* Sort according to | owest total OperatingTi ne.

* That is, smaller total OperatingTine = higher priority.
*/

if (f.getTotal OperatingTinme() < s.getTotal QperatingTinme())
{ return -1; }

if (f.getTotal OperatingTinme() > s.getTotal QperatingTine())
{ return 1; }

/*

* Just in case there is a tie for total OperatingTi ne, sort
* according to tail Nunmber. That is, smaller

* tail Number = higher priority.

*/

if (f.getTailNunberlnt() < s.getTail Numberlnt())
{ return -1; }

if (f.getTail NumberIint() > s.getTail Nunberlnt())
{ return 1; }

return O;
}
el se {

t hrow new |11 egal Argunent Exception("Not an aircraft!");
}

102

package ace;

*

/
Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<P>

Comments: Creates an instance of an AircraftWRAConpar at or obj ect.

Aut hor: Arnol d Buss
Modi fied By: Capt M chael Margolis
*/

EE R T T T R B B

i mport java.util.*;
public class AircraftWRAConparator inplements Conparator {

// instance nethods

*

The sorting criterea for WRAs.
Priority:

1) total nunber of AW

2) nmost NMC tine

3) lowest tail nunber

/

L T R

**/
public int conpare(Chject first, Object second) {
if (first == second) { return O; }
if (first instanceof Aircraft && second instanceof Aircraft) {
Aircraft f = (Aircraft) first;
Aircraft s = (Aircraft) second;

/*

* Sort according to | owest total # of AW WRAs.
* That is, smaller total # AWP = higher priority.
*/

if (f.getTotal NumAWP() < s.getTotal NumAWP()) { return -1; }
if (f.getTotal NumAWP() > s.get Total NumAWP()) { return 1; }

/*
* Sort according to nost amount of tine NMC
* That is, bigger NMC tine = higher priority.
*/

if (f.getNMCTinme() < s.getNMCTine()) { return 1; }
if (f.getNMCTinme() > s.getNMCTine()) { return -1; }

/*

* Just in case the above two are both tied,
* sort according to tail nunber.

*/

if (f.getTail Nunberlint() < s.getTailNunmberint()) { return -1; }
103

if (f.getTail Nunberlint() > s.getTail Nunmberint()) { return 1; }

return O;
}
el se {

throw new |11 egal Argunent Excepti on("Not an aircraft!");
}

104

package exceptions;

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<pP>
/

/

E o R T R

public class RenpveNext ReadyExcepti on extends Runti meException {

publ i c RenmoveNext ReadyException() ({
super ("Attenpted renoval from enpty queue of ready Aircraft");
}

publ i c RenmpbveNext ReadyException(String nessage) {
super (nessage) ;
}

105

package exceptions;

*

Capt M chael Margolis

SIMACE v. 6.0

Thesi s Project

July 1, 2003 <BRrR>

<pP>
/

/

E o R T R

public class RenpveNext ToDoExcepti on extends Runti meException {

publ i c RermoveNext ToDoException() {
super("No nore WRAs to repair.");
}

publ i ¢ RenmpbveNext ToDoException(String nessage) {
super (nessage) ;
}

106

LIST OF REFERENCES

Blanchard, B. S., Logistics Engineering and Management, 5™ ed., Prentice Hall, 1998.

Burrows, J. and Gardner, J., Personal Computer Aviation Retail Requirements Oriented
to Weapon Replaceable Assemblies (ARROWSs) Version 1.0 Users Manual, Navy Ships
Parts Control Center, Mechanicsburg, Pennsylvania, March 1994.

Buss, A. and Stork, K., SIMKIT Version 1.2.6, Naval Postgraduate School, 2002.

Department of Defense (DoD) Instruction 4140.1-R, DoD Material Management
Regulation, May 1998.

Elward, Brad, “Lockheed Martin P-3 Orion US Service,” World Airpower Journal,
Volume 43, pp. 49-108, Winter 2000.

Fabrycky, W. and Blanchard, B., Systems Engineering and Analysis, 3d ed., Prentice
Hall, 1998.

Hunter, David, Beginning XML, 2nd ed., Wrox Press Ltd, pp. 15-18, 2001.

Kim, Larry, The Official XMLSPY Handbook, Wiley Publishing, Inc., p. 88, 2003.

Law, A. and Kelton, W., Simulation, Modeling, and Analysis, 3rd ed., McGraw Hill,
2000.

Locks, Mitchell, O., Reliability, Maintainability, and Availability Assessment, Hydan
Book Company, Inc., p. 5, 1973.

Naval Aviation Logistics Data Analysis (NALDA), [https://www.nalda.navy.mil],
9 January 2003.

Office of the Chief of Naval Operations Instruction 3000.12 (OPNAVINST 3000.12),
Operational Availability of Equipments and Weapons Systems, p. 2, 29 December 1987.

Office of the Chief of Naval Operations Instruction 4790.2H (OPNAVINST 4790.2H),
Naval Aviation Maintenance Program (NAMP), Vol. I, pp. C19-C35, 1 June 2001.

Ray, Erik, T., Learning XML, O’Reilly & Associates, Inc, pp. 2-3, 2001.

107

Sherbrooke, Craig, C., Optimal Inventory Modeling of Systems, Multi-Echelon
Techniques, John Wiley & Sons, Inc., p. 32, 1992.

Werenskjold, G. K., An Exploratory Analysis of Corrective Maintenance During
Extended Surface Ship Deployments, Master’s Thesis, Naval Postgraduate School,
Monterey, California, September 1998.

108

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Fort Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Marine Corps Representative
Naval Postgraduate School
Monterey, California

Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

Director, Studies and Analysis Division, MCCDC, Code C45
Quantico, Virginia

Professor Arnold Buss

Modeling, Virtual Environments and Simulation Institute
Naval Postgraduate School

Monterey, California

Distinguished Professor David Schrady
Department of Operations Research
Naval Postgraduate School

Monterey, California

Professor Gordon Bradley
Department of Operations Research
Naval Postgraduate School
Monterey, California

Mr. Jack Keane

Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland

109

12.

13

14.

15.

Mr. Bill Kroshl
Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland

Mr. Rich Miller
Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland

LtCol Gregory K. Mislick
Department of Operations Research
Naval Postgraduate School
Monterey, California

Captain Michael Margolis
Reston, Virginia

110

